Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel sensor system improves reliability of high-temperature humidity measurements

20.03.2019

A new sensor system developed in Saarbrücken, Germany can not only carefully control drying processes in industrial ovens, but can deliver reliable air humidity measurements even at high temperatures and in the presence of other background vapours. Professor Andreas Schütze, project manager Tilman Sauerwald and their research team at Saarland University have developed with partner companies a sensor system that precisely monitors industrial drying, baking and cooking processes. The new system improves product quality, optimizes the production process and lowers process energy demands.

The engineers will be showcasing their heat-resistant sensor system from the 1st to the 5th of April at this year’s Hannover Messe (Hall 2, Stand B46).


A sensor system that precisely measures air humidity even in hot industrial ovens: Project manager Tilman Sauerwald (l.) and PhD student Henrik Lensch from the research team led by Andreas Schütze.

Photo credit: Oliver Dietze


Professor Andreas Schütze

Photo credit: Oliver Dietze

When food is being baked or steamed as part of an industrial production process, it is important to keep a close eye on humidity levels. If bread or baked goods lose too much moisture or lose it too quickly, the final products will not have the required properties.

If, on the other hand, you can control the humidity in the oven precisely, the croissants will come out perfectly fluffy and the bread will have a deliciously crisp crust.

‘Precision monitoring of humidity can have a crucial effect on the quality of the products. Knowing the humidity levels allows us to carefully control the temperature and air volumes during the production process, and thus also save on energy,’ says Professor Andreas Schütze of Saarland University – an expert in the field of sensor and measuring technology.

Precise measurements of moisture content is also critical when drying wood, textiles and coatings in industrial dryers – particularly to prevent heat damage to the materials.

When making humidity measurements it is essential that temperature fluctuations are recorded precisely, as incorrect temperature readings can falsify the humidity data. Another problem that has to be addressed is the fact that other gases are also released at the high drying temperatures used in industrial ovens and dryers.

For example, alcohol is emitted during the baking process and numerous volatile compounds are released when paints or coatings are dried or cured. Up until now, conventional humidity sensors have struggled to monitor relative water vapour levels due to the presence of these other substances in the hot air.

And these airborne compounds can significantly shorten the lifetime of the sensors or even damage them. ‘In such cases, we talk about the sensor becoming poisoned,’ explains Tilman Sauerwald, senior scientist in Schütze’s team.

When all these factors are taken together, it explains why the humidity measuring systems available up to now have had short service lives and have been either not particularly precise or very expensive.

Measurement technology experts at Saarland University have developed a sensor system that can determine the humidity in industrial ovens and dryers with very high accuracy even at extreme temperatures and in the presence of background interference from other gases. The measurement technology used is complex, but it does far more than simply recording data on individual quantities.

‘We use a special ceramic sensor in combination with a Fourier transform impedance spectrometer. This allows us to make measurements across a large dynamic range and gives us excellent resolution over a wide range of temperatures,’ explains Henrik Lensch, a PhD student in Professor Schütze’s team.

The researchers measure the electrical impedance (i.e. the frequency-dependent resistance to current flow) at different frequencies and compute from this the equivalent resistance and equivalent capacitance values as well as a broad spectrum of other quantities. ‘The resulting spectral data then undergoes model-based analysis,’ explains Tilman Sauerwald.

The analyser unit uses mathematical models to extract those parameters that are relevant to the humidity measurements. The analyser is capable of identifying and filtering out those interference signals that have nothing to do with the humidity. Using this approach, the sensor system can also identify when an error condition or fault occurs.

The research project is a collaboration between Professor Schütze's team and the companies Canway Technology and UST Umweltsensortechnik.

The research scientists will be exhibiting their sensor system at Hannover Messe and will be looking for partners with whom they can develop their technology for new applications.

The project has received funding from the Federal Ministry of Education and Research’s priority funding programme ‘KMU-Innovativ’ that promotes innovative technology in small and medium-sized enterprises.

Press photographs are available at https://www.uni-saarland.de/universitaet/aktuell/pm/pressefotos.html and can be used free of charge.

This press release is available in German at:
https://www.uni-saarland.de/nc/universitaet/aktuell/artikel/nr/20621.html

Contact:
Prof. Dr. Andreas Schütze, Tel.: +49 (0)681 302-4663, Email: schuetze@lmt.uni-saarland.de
Dr. Tilman Sauerwald: Tel.: +49 (0)681 302-2256; Email: t.sauerwald@lmt.uni-saarland.de
Measurement Technology Lab, Saarland University, Saarbrücken, Germany
http://www.lmt.uni-saarland.de

Note for radio journalists: Studio-quality telephone interviews can be conducted using broadcast audio IP codec technology (IP direct dial or via the ARD node 106813020001). Interview requests should be addressed to the University’s Press and Public Relations Office (+49 (0)681 302-64091 or -2601).

The Saarland Research and Innovation Stand at Hannover Messe is organized by Saarland University’s Contact Centre for Technology Transfer (KWT). KWT is the central point of contact for companies interested in exploring opportunities for cooperation and collaboration with researchers at Saarland University.
https://www.kwt-uni-saarland.de/

Wissenschaftliche Ansprechpartner:

Prof. Dr. Andreas Schütze, Tel.: +49 (0)681 302-4663, Email: schuetze@lmt.uni-saarland.de
Dr. Tilman Sauerwald: Tel.: +49 (0)681 302-2256; Email: t.sauerwald@lmt.uni-saarland.de

Claudia Ehrlich | Universität des Saarlandes
Further information:
http://www.uni-saarland.de

More articles from Trade Fair News:

nachricht Fraunhofer IPT presents platform for automated precision assembly of polarized optical fibers
02.07.2019 | Fraunhofer-Institut für Produktionstechnologie IPT

nachricht Fingerprint spectroscopy within a millisecond
24.06.2019 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>