Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Flender N-Bipex coupling extends service life of entire drive train

23.04.2015

Siemens at the Achema 2015, Hall 11, Booth C3

  • Improved service life due to optimized cam and elastomer geometry combined with high-grade materials
  • Torque range increased by up to 20 percent
  • Newly developed elastomers enable application in temperature ranges from -50°C to +100°C with full utilization of nominal torques
  • Suitable for applications in the chemical, environmental engineering and steel industries

Newly developed elastomers and use of the nodular cast iron casting method allow the Flender N-Bipex claw coupling to achieve improved and, most importantly, temperature-independent performance alongside a high degree of freedom for shaping the cams.

Siemens is extending its comprehensive coupling portfolio to include a new elastic claw coupling, the Flender N-Bipex, which will be available in ten sizes made of high-quality nodular cast iron. An optimized cam geometry and newly developed elastomers have meant a major improvement to the service life of the N-Bipex in comparison to standard couplings available in the marketplace.

Depending on the size, torque has been increased by between ten and 20 percent over previous solutions. The new elastomers are available in three different shore hardnesses, and allow the couplings to be used across a temperature range of -50° C to +100 °C without compromising nominal torque.

Flender N-Bipex couplings are used predominantly in connection with hydraulic systems and geared motors, meaning that they are found across the whole of the machine building sector, with applications throughout the chemical, environmental engineering and steel industries.

The casting method used increases the degree of freedom for shaping the cams. This added scope enables the contour to be designed to ensure optimum engagement of the load flank surfaces. The decisive factor here is that the adjacent cam ring made of high-grade polyurethane has the facility for sufficient load-dependent deformation, while remaining in its designated position under all conditions. This results in a marked reduction in wear coupled with increased performance.

The degree of resilience to forced rupture and the maximum admissible speeds achievable with nodular cast iron couplings are far superior to those of grey cast iron couplings, and are comparable to their steel counterparts.

The newly developed elastomers used for the Flender N-Bipex are designed for high performance. They are capable of withstanding dynamic loads across a very wide temperature range without restriction. The material used offers excellent compressive strength, wear resistance, dimensional stability and ductility.

For more information on couplings, please go to www.siemens.com/couplings


Siemens AG (Berlin and Munich) is a global technology powerhouse that has stood for engineering excellence, innovation, quality, reliability and internationality for more than 165 years. The company is active in more than 200 countries, focusing on the areas of electrification, automation and digitalization. One of the world's largest producers of energy-efficient, resource-saving technologies, Siemens is No. 1 in offshore wind turbine construction, a leading supplier of combined cycle turbines for power generation, a major provider of power transmission solutions and a pioneer in infrastructure solutions as well as automation, drive and software solutions for industry. The company is also a leading provider of medical imaging equipment – such as computed tomography and magnetic resonance imaging systems – and a leader in laboratory diagnostics as well as clinical IT. In fiscal 2014, which ended on September 30, 2014, Siemens generated revenue from continuing operations of €71.9 billion and net income of €5.5 billion. At the end of September 2014, the company had around 343,000 employees worldwide on a continuing basis.

Further information is available on the Internet at www.siemens.com


Reference Number: PR2015040184PDEN


Contact


Ms. Ines Giovannini
Process Industries and Drives Division
Siemens AG

Gleiwitzer Str. 555

90475 Nuremberg

Germany

Tel: +49 (911) 895-7946

ines.giovannini​@siemens.com

Ines Giovannini | Siemens Process Industries and Drives

More articles from Trade Fair News:

nachricht Sanitized siphons – fewer hospital germs
18.04.2019 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Power Electronics: Ceramic Embedding Gives a Boost to Wide Bandgap Semiconductor Devices
12.04.2019 | Fraunhofer IISB

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>