Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Medtec 2015: Getting the perfect fit for artificial hips

08.04.2015

When a patient receives a new hip, it is usually adjusted only approximately to leg length. Greater accuracy requires a more precise measuring process as well as adjustable implants. Now, a new type of measurement method coupled with a modular implant should allow orthopedic surgeons to precisely calibrate leg length after the operation so it matches its original length. The researchers will be introducing their development at the Medtec expo in Stuttgart, April 21-23 (Hall 7, Booth B04).

A painful hip that feels unstable and no longer has the same range of motion: For many patients, this means they need a prosthetic hip – something that happens to more than 200,000 people each year in Germany alone.


Modular hip implant.

© Fraunhofer IWU


Measuring system for determining leg length.

© Fraunhofer IWU

Implant manufacturers face numerous challenges; for example, the artificial joints may eventually break. In addition, orthopedic surgeons currently have no suitable method for precisely measuring leg length before the operation or for adjusting the implants accordingly.

The result is that after the operation, the leg can actually be longer or shorter than it used to be. This leads to problems with the spine, which have to be resolved using shoe inserts.

There’s a better solution on the horizon: With the completely new measuring technique developed by the Fraunhofer Institute for Machine Tools and Forming Technology IWU, orthopedic surgeons will be able to measure their patients’ leg lengths much more precisely.

The Fraunhofer researchers collaborated on the new system with several project partners: the Clinic for Orthopedics, Trauma Surgery and Plastic Surgery at the Leipzig University Hospital; University of Applied Sciences Zwickau and its Research and Transfer Centre; AQ Implants GmbH; and MSB-Orthopädie-Technik GmbH.

“The margin of error in our process is less than one centimeter,” explains Dr. Ronny Grunert, a researcher at IWU. “Eventually we’d like to get that down to five millimeters.” Currently, the usual procedure calls for the doctors to determine leg length with a tape measure, which can lead to errors of up to two centimeters.

Here’s how it works: With the patient in a prone position, the doctor affixes a small plastic box containing two LEDs to the patient’s shin. The doctor then takes hold of the patient’s heel and lifts it upward. With that motion, the two lights trace an arc that is recorded by a camera positioned about 1.5 meters to the side of the patient.

The principle is similar to that of a compass. The hip joint, from which the leg “hangs,” is essentially the point of the compass, while the LEDs act as the pencil. If the distance between the two changes, i.e. if the leg becomes shorter or longer, that will change the arc traced by the LEDs. The doctor takes this measurement twice – once right before the operation and once after the implant has been temporarily inserted. The box remains on the leg during the operation.

A software program compares both arcs to determine if the leg is the same length it was before the procedure. If necessary, the doctor can make adjustments to the artificial hip. Initial testing of a measuring system prototype has already met with success at the Leipzig University hospital. There are plans for a clinical trial later this year, and the new system could be on the market in about two years.

Unbreakable, adjustable hip implants

Fraunhofer’s researchers also optimized the hip implants, again working together with partners from industry, medicine and research. “We’ve developed an implant that can be adjusted to each individual patient,” says Grunert. The trick was to do away with prefabricated implants in various sizes and use a modular system instead.

In this method, the doctor can select the right hip stem as well as the right neck for each patient. Special screw connections are used to attach the individual parts to each other and the combined unit is implanted in the hip for testing. The doctor now measures the leg length, and, if necessary, can easily separate the implant’s various components to exchange them for better-fitting parts or adjust them as required.

Another advantage is that the artificial hip is less prone to breakage than conventional modular models with a conical clamping ring. Currently, the doctor connects the stem and the neck of the prefabricated artificial hip during the operation with a well-placed stroke of the hammer. This puts tremendous stress on the connection point, a conical clamping ring.

Furthermore, once the parts have been joined together, it’s virtually impossible to separate and adjust them. That’s not the case for the specialized screws that hold the parts of the new implants together. The point where they connect is mechanically stable and prevents the implant from breaking.

The new system was developed within the “artificial joints” cooperative network, which is funded by the Federal Ministry for Economic Affairs and Energy (BMWi) and coordinated by Fraunhofer IWU. At the Medtec expo, the researchers will present the leg-length measuring system and the modular hip implant as well as the artificial joint network.

Weitere Informationen:

http://www.fraunhofer.de/en/press/research-news/2015/april/getting-the-perfect-f...

Britta Widmann | Fraunhofer-Gesellschaft

More articles from Trade Fair News:

nachricht IVAM product market at the COMPAMED 2019: No digitalization in medical technology without microtechnologies
11.10.2019 | IVAM Fachverband für Mikrotechnik

nachricht Polyamides from terpenes: Amorphous Caramid-R® and semi-crystalline Caramid-S®
09.10.2019 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Switch2save: smart windows and glass façades for highly efficient energy management

15.10.2019 | Architecture and Construction

Bayreuth researchers discover stable high-energy material

15.10.2019 | Materials Sciences

Putting quantum bits into the fiber optic network: Launching the QFC-4-1QID project

15.10.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>