Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making Light Work: Laser Processes for Hybrid Construction

30.01.2017

At the JEC World Composites Show in Paris in March 2017, the Fraunhofer Institute for Laser Technology ILT in Aachen will be in line with the trend towards hybrid construction: at the joint booth of the Aachen Center for Integrative Lightweight Production (AZL, Hall 6, Booth C79), ILT researchers will be presenting three laser-based processes for use with plastic-metal composites.

Lightweight components made of fiber-reinforced plastic (FRP) and metal are growing in significance across a wide range of industries, but especially in the automotive sector. When producing these components, one of the key questions is how to bond and cut these different materials in a permanent and reliable way.


Hybrid bond produced using injection molding.

Fraunhofer ILT, Aachen, Germany


CFRP-metal cutting edge.

Fraunhofer ILT, Aachen, Germany

Combination of Form-closed Bonding and Specific Adhesion

As part of the BMBF’s HyBriLight project, Fraunhofer ILT has developed an alternative to today’s preferred adhesive bonding technique. “This new process bonds plastic and metal to one another using both form-closed bonding and specific adhesion,” explains Kira van der Straeten, a scientist in the Plastics Processing team.

First, an ultrafast laser performs surface ablation on the metal to create micro- and nanostructures at high structural density. Next, the metal is heated and the plastic is melted using thermal conduction. The molten plastic flows into the microstructures; once it has cooled, this creates a strong, permanent bond between the two materials.

This process can be used to produce hybrid components with extremely high tensile shear strength of around 25 MPa. This degree of strength is above all a result of the strong adhesive effect of the micro- and nanostructures arising from the specific and mechanical adhesion.

Industrial Application of the Joining Technique in Hybrid Injection Molding

A similar process was developed for another hybrid construction method used predominantly in the automotive and electronics industries: injection molding, which produces components made of plastic with metallic inserts.

In Paris, Fraunhofer ILT is presenting a laser-based technology that bonds the plastic and the inserts without additives and with excellent strength. Laser light creates microstructures in the metal; these then fill up with liquid plastic in the subsequent injection molding step.

Once the plastic has hardened, the result is a strong, permanent and form-closed bond with tensile shear strength of over 22 MPa. “We can influence the strength of the bond by altering the density and orientation of the microstructures on the metallic component, which means bond strength can be adjusted to suit future operating conditions,” van der Straeten explains.

Laser Cutting enables Form-locking Joining

Joining techniques such as riveting or other form-locking bonds require precise joining edges. Lasers can achieve the necessary cuts, even when joining materials as different as metal and carbon-fiber-reinforced plastic (CFRP), without wear and using just one tool. At the joint AZL booth, Fraunhofer ILT is presenting a process for cutting stacked layers of CFRP and titanium or aluminum.

“The CFRP is ablated during multiple scans,” explains Dr. Frank Schneider, senior expert in the Macro Joining and Cutting group. “Thanks to a smart scan strategy, the resulting kerf is an ideal preparation for the succeeding metal cut, which is performed during a subsequent pass with the support of cutting gas.” Both halves of the process can also be used on material compounds lined up next to each other in butt joints. In this case, the laser cutting produces a form-locking contour of the components to be joined.

Visitors to the JEC World Composite Show in Paris (March 14-16, 2017) can find out more about these three processes at the joint AZL booth, Booth C79, Hall 6.

Contact

Kira van der Straeten M. Sc.
Group Micro Joining
Phone +49 241 8906-158
kira.van.der.straeten@ilt.fraunhofer.de

Dr.-Ing. Frank Schneider
Group Macro Joining and Cutting
Phone +49 241 8906-426
frank.schneider@ilt.fraunhofer.de

Weitere Informationen:

http://www.ilt.fraunhofer.de/en

Petra Nolis M.A. | Fraunhofer-Institut für Lasertechnik ILT

More articles from Trade Fair News:

nachricht Medica 2018: Mobile motion feedback to help patients reduce relieving postures when walking
07.11.2018 | Technische Universität Kaiserslautern

nachricht Medica 2018: Control with your feet - computer game to help prevent thrombosis
05.11.2018 | Technische Universität Kaiserslautern

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>