Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light weight construction for aeronautics and transport: sustainably repairing and recycling CFRP

07.03.2016

High performance carbon fiber reinforced plastics (CFRP) have firmly established themselves in modern airplanes. Repairs, however, are very laborious and often even impossible. Most of the time, the entire component has to be replaced. The PYCO Research Division at the Fraunhofer Institute for Applied Polymer Research IAP in Potsdam, Germany, has developed a simple, cost-effective and energy-efficient way to make sustainable repairs. Moreover, entire components can be completely recycled in a process in which the expensive carbon fibers are reclaimed. Researchers will present their developments at JEC World in Paris from March 8 to 10, 2016 in Hall 5a, stand D52.

Composites made from crosslinked polymers – so-called thermosets – are reinforced with carbon, glass or natural fibers. Their rich spectrum of properties have increased their importance in aerospace, the automotive industry, wind power generation, shipbuilding, railway construction, building construction, and civil engineering.


Defective airplane components made from carbon fiber reinforced plastics may soon be repaired or recycled easily and cost-effectively.

mev-Verlag

Yet, even the best material can become damaged or show wear and tear. Engineers must then decide whether the defective area should be painstakingly and expensively patched, or whether the entire component has to be replaced.

“Repairing and recycling polymer-based composites are inseparably linked to resource efficiency and sustainability”, explains Dr. Christian Dreyer, who leads the Research Division Polymeric Materials and Composites PYCO at the Fraunhofer IAP. “Finite resources increase the importance of sustainable management and the use of recyclable and repairable polymer materials”, says Dreyer.

The researchers have therefore developed a process for repairing and chemically recycling fiber-reinforced thermosets. These are especially used as matrix resins in composites for high-stress components.

The crosslinked polymers form a very rigid structure that gives the component its shape. But it is precisely this structure that creates a problem when it comes to repairing or recycling the component. Unlike thermoplastics, once thermosets are cured, it is very difficult to chemically decompose them.

Repairing and reclaiming – simple, cost-effective and energy-efficient

“We have developed a fast and gentle way for a chemical recycling which allows highly crosslinked plastics to be broken down into their basic elements”, Dreyer explains. This development enables a component to be completely recycled or to be repaired locally. The resin matrix is gently removed from the defective area without significantly impacting the mechanical properties of the reinforcement fiber. The exposed fibers are then refilled with repair resin and cured.

The new process is also setting the standard for recycling. Until now discarded components have been either incinerated or shredded to be used as fillers. The Fraunhofer researchers have the crucial advantage when it comes to chemical recycling: the often expensive reinforcement fibers are reclaimed alongside the decomposed polymer matrix. Due to the limited size of the components, the fibers are no longer continuous filaments. Nevertheless there are many applications that use fibers measuring up to several centimeters.

Professor Alexander Böker, who heads up the Fraunhofer IAP explains: “This recycling process is of particular interest to companies since the matrix material can also be recycled on an industrial scale. This allows sufficient quantities of new ‘recycling thermosets’ to be synthesized. The Fraunhofer Pilot Plant Centre for Polymer Synthesis and Processing PAZ – a joint initiative of the Fraunhofer Institute for Applied Polymer Research IAP in Potsdam-Golm and for Microstructure of Materials and Systems IMWS in Halle/Saale – enables us to manufacture these resins in industry-relevant quantities.

Visit us at JEC World!

JEC World 2016 | March 8 – 10, 2016, Paris (F) |
Joint stand run by Carbon Composites e.V., Halle 5a, Stand D52

Exhibition grounds: Paris Nord Villepinte Exhibition Centre |
Address : CD 40, ZAC Paris Nord 2, 93420 Villepinte, France


Fraunhofer Institute for Applied Polymer Research IAP

The Fraunhofer IAP in Potsdam-Golm, Germany, specializes in research and development of polymer applications. It supports companies and partners in custom development and optimization of innovative and sustainable materials, processing aids and procedures. In addition to the environmentally friendly, economical production and processing of polymers in the laboratory and pilot plant scale, the institute also offers the characterization of polymers. Synthetic petroleum-based polymers as well as biopolymers and biobased polymers from renewable raw materials are in the focus of the institute’s work. The applications are diverse, ranging from biotechnology, medicine, pharmacy and cosmetics to electronics and optics as well as applications in the packaging, environmental and wastewater engineering or the aerospace, automotive, paper, construction and coatings industries. | Director: Prof. Dr. Alexander Böker

Contact:
Dr. Sandra Mehlhase | Press & Public Relations
Geiselbergstraße 69 | 14476 Potsdam-Golm, Germany
Phone: +49 331 568-1151 | email: sandra.mehlhase@iap.fraunhofer.de

Dr. Sandra Mehlhase | Fraunhofer-Institut für Angewandte Polymerforschung IAP

More articles from Trade Fair News:

nachricht AchemAsia 2019 will take place in Shanghai
15.06.2018 | DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V.

nachricht Insects supply chitin as a raw material for the textile industry
05.06.2018 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>