Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

25.09.2017

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed itself. In focus is a new light-weight robot (LBR is German for lightweight robot) developed by Kuka Roboter GmbH from Augsburg. According to company statements, not only is the LBR iiwa, or “intelligent industrial work assistant (iiwa)”, the first sensitive robot to be manufactured in series, but it also helps man and robot work closely together.


The lightweight construction robot “intelligent industrial work assistant” guarantees that man and machine cooperate smoothly.

© KUKA AG, Augsburg, Germany.


Battery modules from 18650-battery cells contacted by laser-beam microwelding. This module was developed in collaboration with the Fraunhofer LBF LBF in Darmstadt as part of the project evTrailer.

© Fraunhofer ILT, Aachen, Germany.

Spacer provides optical distance

The Aachen researchers have mounted a relay-optic and a spacer on the collaborating robot (Cobot), the latter of which ensures that the optics complies with the distance (focal length) required for the process. The LBR iiwa “feels” when the spacer touches the weld and starts the welding process. Thus, the welding points are always held at a constant distance from the lens thanks to the spacer and the sensing robot.

In Munich, Fraunhofer ILT will be using concrete applications to demonstrate how the microjoining process in battery technology can be made more precise and reliable with the help of this lightweight robot. In detail, it is addressing how to better weld prismatic, round and pouch cells.

In a demonstration, the institute combines the two processes of microjoining and 3D printing, in which this welding process plays a leading technical role. The Aachen-based scientists will be presenting a technology demonstrator on how a copper contact element can be connected to a round cell via LaserTAB.

The Fraunhofer ILT has also developed a specially shaped copper connector, which it manufactures on its own with Selective Laser Melting (SLM), also known as Laser Beam Melting or Laser Powder-Bed Fusion (L-PBF).

No more complicated positioning necessary

All possible applications point to the advantages of the new robot-assisted process, in which the user guides the robot directly to the point of use. It saves the previous, elaborate search of the focus position and the cumbersome positioning of the laser. In addition, the spacer ensures that the focus position does not change during joining and that the connector is pressed against the workpiece or the battery.

Elaborate clamping devices are, therefore, superfluous or can be less complex. In particular, users will appreciate how the system mechanically maintains the distance of the optics to the welding site, especially when they have to balance production tolerances or different heights. In these challenging situations with their mostly very complex geometries, the robot-assisted LaserTAB works much more precisely than conventional methods.

Fraunhofer ILT at the productronica

More information on LaserTAB will be available at the joint Fraunhofer stand B2.317 at productronica, the world's leading trade fair for electronics development and production, from November 14 to 17, 2017 in Munich.

Contact

Johanna Helm M. Sc.
Micro Joining Group
Telephone +49 241 8906-8382
johanna.helm@ilt.fraunhofer.de

Dr.-Ing. Alexander Olowinsky
Group Manager Micro Joining
Telefon +49 241 8906-491
alexander.olowinsky@ilt.fraunhofer.de

Weitere Informationen:

http://www.ilt.fraunhofer.de/en

Petra Nolis M.A. | Fraunhofer-Institut für Lasertechnik ILT

More articles from Trade Fair News:

nachricht AchemAsia 2019 will take place in Shanghai
15.06.2018 | DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V.

nachricht Insects supply chitin as a raw material for the textile industry
05.06.2018 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>