Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Laser technology supports the path to printed electronic diversity


In recent years, the demands placed on component-integrated electronics have risen so sharply in many industries that they can often no longer be met with conventional electronic components. As an alternative, printed electronics is on the advance. At the Hanover Fair from April 1 to 5, 2019, experts from the Fraunhofer Institute for Laser Technology ILT in Aachen, Germany, will be demonstrating the role lasers play in this process. Highlights include the directly printed strain gauge sensor, the locally gold-plated contacts and the electrically conductive glass fiber fabric.

Fraunhofer ILT's Thin Film Processing group specializes in the post-treatment of coatings using lasers: One of its focal points is the laser-based treatment of printed, thin electronic layers.

Direct printing: Fraunhofer ILT is demonstrating a strain gauge sensor that can be applied directly and automatically to the component thanks to a combination of printing and laser technology.

Fraunhofer ILT, Aachen, Germany

Noble metal contacts Fraunhofer ILT uses printing and laser technology to automatically produce local gold plating for electric contacts.

Fraunhofer ILT, Aachen, Germany

Wet coating processes such as inkjet, pad or dispensing printing and many others are used to deposit the necessary materials onto the components to integrate electrical functions into them. Depending on the process, different layers can be applied which vary in thickness, width or structure.

Laser-based heat post-treatment in two steps

However, all layers have a common denominator: They require heat post-treatment, which is carried out conventionally in a furnace, for example. "The post-treatment using furnaces can take a long time and is very energy-intensive because the entire component is heated," explains Dr. Christian Vedder, group leader at Fraunhofer ILT.

"In its place, a laser beam can be used, which works much more precisely and quickly: It can process small structures on components in such a short time that the coating can be heated locally to temperatures above the damage threshold of the component, but without damaging the component itself.

Laser processing takes place in two steps: First, the laser beam dries the layer to remove solvents. As a result, only the functional particles, for example silver, gold, etc., remain. The laser then partially or completely melts these micro- or nanoparticles and connects them so that they can conduct electricity, for example.

Printed sensor replaces strain gauges

Fraunhofer ILT is demonstrating its capabilities in this field, for example, with an additively manufactured strain gauge that can be used to measure the elongation of a component. The Aachen researchers have developed a method for directly applying the sensor to substitute the conventional foil strain gauge, which commonly has to be applied manually to the component.

To achieve this, the scientists deposit an insulation layer on a metallic component, onto which a measuring grid including conductor paths is printed by means of inkjet or aerosol jet. All post-treatment is done using laser radiation. If necessary, a final encapsulation with a further insulation layer follows.

"We will be presenting the design and functionality of a demonstrator in Hanover," says Dr. Vedder. "We show how the electrical resistance of the additive measuring grid changes under mechanical stress. In addition, we’ll be presenting a variety of different geometries."

Individual car doors enabled by process combination

Results of the Fraunhofer lighthouse project »Go Beyond 4.0« will also be displayed: The Fraunhofer Institutes ENAS, IFAM, IWU, ISC, IOF and ILT are working on the application of electronic functional layers on components from the automotive, aviation and lighting sectors.

These development activities are particularly interesting for vehicle manufacturers who install a great deal of electronics in cars and trucks – ranging from the windscreen wiper control over the camera module in the bumper all the way to modern sensors.

"With the new technology, it will be possible to individualize mass components, such as doors, using digital print and laser processes. In the future, electrical signal and power interconnects for different car configurations may be applied directly and automatically to the components, without having to keep individual cable harnesses available," said the ILT scientist assessing the potential of this technology. In addition to printing electrical conductors, this technology enables the integration of new sensors and lighting elements.

"We are starting with surface structuring using laser ablation: Cavities of almost any shape can be manufactured which will then be coated with an electrical insulation layer using digital printing technologies. The laser post-treatment of the insulation layer is followed by printing another layer of electrical conductors or sensors and their laser-based post-treatment.

Ready for take-off: A multi-functional aircraft wing

Within the lighthouse project »Go Beyond 4.0«, a demonstrator part for the aerospace industry will also be developed. Carbon or glass fiber fabrics are in demand due to the need for weight reduction. Using a combination of printing and laser technology, the researchers can apply electrical functional layers directly to the fabrics, which then are embedded into the component matrix material.

The functional elements are thus protected in the fiber composite component. In addition to electrical interconnects for new sensors and lighting elements, heating structures in aircraft wings, for example, could also be manufactured in this way.

Waste passé: Local gold-plating of electrical contacts

In Hanover, the Fraunhofer ILT will display further applications for the combination of printing and laser technology. One approach demonstrates how plug contacts can be gold-plated more selectively than before: The gold is only applied at spots where the electrically conductive contact is actually required. The approach boasts many advantages: Not only does the process reduce the amount of gold needed – compared to a fully gold-plated part – but it has a design flexibility and independence from long delivery times that plague the industry.

Battery manufacturers might be interested in a laser-based method for drying battery electrode layers that are prior deposited as pastes to copper foils. This method saves both energy and installation space, two more advantages.

Fraunhofer ILT also uses laser radiation to create functional layers for microelectronic accelerometers. A piezoelectric actuator, however, is used to generate motion: It deforms when voltage is applied. Here, the Aachen researchers are investigating how the piezoelectric layers can be applied in a more cost-saving way using laser radiation for crystallization.

Fraunhofer ILT at the Hanover Fair 2019

Fraunhofer ILT will be presenting its exhibits and topics at the joint Fraunhofer booth in Hall 6, A30.

Wissenschaftliche Ansprechpartner:

Dr.-Ing. Christian Vedder
Group Manager
Thin Film Processing
Telephone +49 241 8906-378

Bernhard Josef Lüttgenau
Thin Film Processing
Telephone +49 241 8906-301


Petra Nolis M.A. | Fraunhofer-Institut für Lasertechnik ILT

More articles from Trade Fair News:

nachricht Sanitized siphons – fewer hospital germs
18.04.2019 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Power Electronics: Ceramic Embedding Gives a Boost to Wide Bandgap Semiconductor Devices
12.04.2019 | Fraunhofer IISB

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

Science & Research
Overview of more VideoLinks >>>