Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser Technology Can Improve Hearing

20.04.2012
The Laser Zentrum Hannover e.V. (LZH) is developing innovative technologies for improved insertion techniques and exact fitting of cochlea implants in the inner ear, as well as better quality for residual hearing.

The Laser Zentrum Hannover e.V. (LZH) is developing innovative technologies for improved insertion techniques and exact fitting of cochlea implants in the inner ear, as well as better quality for residual hearing. Current results will be presented the the LZH Stand at the Hannover Messe 2012, from April 23rd to 27th.


Cochlea implant with an external microphone and micro-speech-processor (illustration copyright: Cochlear)

Approximately 95% of all those who are highly hearing impaired have an adequately intact auditory nerve, enough to provide at least partial hearing. An important device for this process is a cochlea implant (CI), and electronical acoustic aid or prosthesis, which takes over the function of damaged sensory cells in the inner ear. This aid consists of an implant, which is placed in the bone, under the skin behind the ear, an electrode which is placed directly in the cochlea, and a microphone and speech processor, which is also placed behind the ear. The aid functions in this way: When sound waves are registered by the microphone, they are “translated” into a series of electrical impulses, which are then lead to the electrode on the auditory nerve in the inner ear.

The basilar membrane, which is covered by tiny sensory cells or hairs, can only provide optimal hearing if it is not damaged. If this membrane is damaged, this can lead to complete loss of residual hearing. This means that the cochlea electrode must be inserted extremely carefully, to avoid damage to the membrane.

The group “Surface Technology” at the LZH is currently working on a process to simplify the operation and improve the insertion technique of the electrode into the complicated form of the cochlea. In order to accomplish this, the scientists use the special properties of nickel-titanium shape memory alloys (NiTi-SMA) in manufacturing the CI electrodes.

By heating the electrode, or via electrical impulses, this material “remembers” the form or shape it was manufactured in, thus allowing specific movement and fitting of the electrode. On the one hand, laser melting is used to form the NiTi-SMA into a highly individual implant. On the other hand, the special characteristics of the material can be used to insert the implant into the cochlea without damaging the basilar membrane. Basically, the deeper the material is inserted into the cochlea and the better the fit, the better hearing can be.

At the Laser Zentrum Hannover, a second approach is also being used to optimize the characteristics of cochlea implants. The group Laser Micromachining has set a goal of improving the surface of implants by using laser structuring. “The surface of conventional cochlea implants is not subject to special treatment, and a great potential is lost! We have learned from mother nature that biological surfaces, for example of lotus leaves or shark skin, have defined structures for special functions” explains scientist Elena Fadeeva. By using a femtosecond laser, the platinum electrodes can be structured in a special way. Special nanostructures, looking very rough when magnified, can be manufactured, which reduce attachment of connective tissue and improve interaction with the nerve cells. Simultaneously, nanostructuring decreases frequency-dependent electrical resistance, meaning less energy is needed. The special challenge of this innovative development is that the structures must be made on an implant which is only 300 µm in diameter, and which has a curved surface. At the moment, the LZH is working on a unit, which can provide these complex structures on a very small scale.

Cochlea implants are especially interesting for people who, even with the best hearing aids, cannot understand spoken language well enough. Over 200,000 people worldwide could profit from these “artificial inner ears”. About half of the adults using CIs could even use the telephone again after sufficient training takes place. For those having shortly lost hearing, or for children, the success rate should be even higher.

Current activities at the LZH concerning cochlea implants are being financially supported within the framework of the German Federal Ministry of Education and Research (BMBF) project Gentle CI, and by the interdisciplinary special research program 599 of the German Research Foundation (DFG). Among the project partners is the Hannover Medical School (MHH), which has the world’s largest cochlea implant program for the extremely hearing impaired.

Be sure to visit us at the Hannover Messe 2012 (April 23rd to 27th), in hall 17, stand C55.

Contact:
Laser Zentrum Hannover e.V.
Michael Botts
Hollerithallee 8
D-30419 Hannover, Germany
Tel.: +49 511 2788-151
Fax: +49 511 2788-100
E-Mail: m.botts@lzh.de

The Laser Zentrum Hannover e.V. (LZH) carries out research and development in the field of laser technology and is supported by the Ministry of Economic Affairs, Labour and Transport of the State of Lower Saxony (Niedersächsisches Ministerium für Wirtschaft, Arbeit und Verkehr).

Michael Botts | Laser Zentrum Hannover e.V.
Further information:
http://www.lzh.de

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Porous graphene ribbons doped with nitrogen for electronics and quantum computing

09.07.2020 | Physics and Astronomy

Record efficiency for printed solar cells

09.07.2020 | Power and Electrical Engineering

Rock 'n' control

09.07.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>