Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser cladding now four times faster

28.04.2010
Hybrid technology makes laser powder cladding even faster and more reliable.

At the LAM in Houston (Texas, USA) and the LASYS in Stuttgart (Germany), Fraunhofer IWS Dresden and Laserline are presenting a highly productive, compact coaxial head for laser assisted cladding.

The induction module is arranged coaxially around the nozzle so that it’s fully omnidirectional. This arrangement of the hybrid cladding head offers increased performance, high ease of use, easy automation and high robustness.

Combining a solid-state laser (4 kW) with a locally integrated additional induction module (14 kW), the patented COAXpowerline head by Fraunhofer IWS enables deposition rates of 8 kg metallic powder per hour. Up to four times higher rates can be provided compared with a single 4 kW solid-state laser. Thus, even small lasers can reach deposition rates in the range of plasma transferred arc (PTA) surfacing, without undercuts and at mixing degrees below 8 %.

If one dares a view into the near future, technically and economically meaningful upper limits are to be expected at 10 kW diode laser power and 40 kW induction power. With this combination, deposition rates of up to 30 kg metallic powder per hour could be realized. The researchers of Fraunhofer IWS are looking forward to take on this challenging task.

With the COAXpowerline head the energetic overall efficiency can already be increased by more a factor of two. Where otherwise a 10 KW laser would be necessary, now a 4 kW laser will be sufficient! Thus, the investment costs per kW of total power can be reduced by at least 50%.

A further effect that characterizes the new system is the wider range of materials that can be processed. Simultaneous base material preheating enables the crack-free deposition of especially hard and wear resistant materials. Coatings with a hardness of up to 64 HRC can be reached precisely.

Like all COAXn systems, COAXpowerline provides omnidirectional energy and weld deposit feeding. Yet equipped with the additional induction module the cladding head remains very compact and can be applied regardless the geometry and size of the component. Furthermore, the camera based temperature control system ?E-MAqS? by Fraunhofer IWS can be coaxially integrated in the beam path. This on-line process control represents another unique feature in the market.

For more than twenty years, the Fraunhofer IWS has been developing processing heads for continuous powder and wire feeding. With these components, users are provided with advanced tools for laser cladding applications. During the last ten years, more than 80 systems have found their way into industrial production or research worldwide.

Your contact for further information:

Fraunhofer Institute for Material and Beam Technology IWS Dresden
(Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS Dresden)
01277 Dresden, Winterbergstraße 28, Germany
Dr. Steffen Nowotny (System Technology Laser Cladding)
Phone: +49 (0) 351 83391 3241
Fax: +49 (0) 351 83391 3300
E-mail: steffen.nowotny@iws.fraunhofer.de
Dr. Ralf Jäckel (Public Relations)
Phone: +49 (0) 351 83391 3444
Fax: +49 (0) 351 83391 3300
E-mail: ralf.jaeckel@iws.fraunhofer.de

Dr. Ralf Jaeckel | idw
Further information:
http://www.iws.fraunhofer.de
http://www.iws.fraunhofer.de/presse/presse.html

More articles from Trade Fair News:

nachricht AchemAsia 2019 will take place in Shanghai
15.06.2018 | DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V.

nachricht Insects supply chitin as a raw material for the textile industry
05.06.2018 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>