Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


JEC World 2020: laser processes for future composites


Experts in composites strive to develop and research special combinations of materials for lightweight construction and other innovative applications – results of their work will be on show at JEC World in Paris from March 3 to 5, 2020. As the world’s leading trade fair for the composites industry, JEC World offers comprehensive insights into the entire value chain of custom material manufacturing and processing. The Aachen-based Fraunhofer Institute for Laser Technology ILT will be taking the opportunity to showcase laser-based processes for lightweight materials and hybrid joints.

At JEC World, Fraunhofer ILT will be presenting a range of research results, including recent findings on the ageing behavior of thermally joined metal-plastic hybrids. These multi-material designs employ a range of materials that are adapted to local loads, paving new ways to optimize component weight.

Flexible and automated USP laser ablation for CFRP preforms.

© Institut für Textiltechnik (ITA) at RWTH Aachen University, Aachen, Germany

Top hat profile with ribbing for crash tests (material combination: magnesium / PP GF30).

© Fraunhofer ILT, Aachen, Germany

“The physical and chemical differences between the materials make it particularly challenging to join the elements together, especially when it comes to plastics and metals,” says Kira van der Straeten, scientist in the Micro Joining Group at Fraunhofer ILT.

“In addition, different material properties – such as thermal expansion and corrosive infiltration – place high demands on hybrid compounds.” Assessing the ageing behavior of the joint is therefore essential to determining the long-term stability of hybrid parts.

A competitively advantageous joining process for plastic-metal hybrid joints

In cooperation with the Welding and Joining Institute (ISF) at RWTH Aachen University, partners of the AGeD project examined a range of surface pre-treatments, joining processes and material combinations and tested how these performed in hybrid joints. To obtain information on the long-term stability, the team conducted climate change tests and corrosion tests on hybrid joints consisting of various metals and combinations of plastics.

The results of tensile shear tests conducted before and after the alternating-climate testing of laser-structured and laser-bonded hybrid joints revealed no significant reduction in bond strength. Equally, there was no detectable negative influence on the tensile shear strength of the joints subsequent to corrosion testing.

Kira van der Straeten summed up the results of the project, which was commissioned by Germany’s Federal Ministry for Economic Affairs and Energy (BMWi): ”The results show that this method has a clear competitive advantage compared to other joining methods and that it is perfectly suited to a whole range of different plastic-metal hybrid joints.” Offering good long-term stability under a wide range of environmental influences, this technique is a particularly good choice for applications in the automotive and aerospace industries.

Microstructures for magnesium sheets

Together with the Institute for Plastics Processing (IKV) in Industry and Craft at RWTH Aachen University, Fraunhofer ILT has developed a dedicated method of joining plastics to magnesium sheets. At the JEC fair, the researchers from Aachen will be showcasing how injection molding and laser microstructuring can be used to produce extremely lightweight parts.

This method involves using fiber laser radiation to microstructure magnesium sheets in an argon atmosphere. The sheets are then placed in an injection molding tool and the plastic is bonded to the magnesium sheet by means of a special injection molding process in which the molten plastic fills the microstructures to form an adhesive bond. Thanks to this form fit, even chemically different materials can be easily joined together.

Tests have shown that this method can achieve tensile shear strengths of over 28 MPa through modifications to the structural geometry and layout. These values are significantly higher than the standard strengths for structural bonds in joining processes based on adhesion agents, which are generally in the region of 10 MPa.

Robot-guided laser beam drills CFRP preforms

The Aachen-based scientists will also be taking the opportunity of the Paris fair to demonstrate how a robot-guided ultrashort pulsed (USP) laser can be used as an efficient and reliable tool for drilling 3D-formed CFRP preforms. Five project partners from research and industry joined forces as part of the publicly funded CarboLase project to create a robot cell with an automated process chain to manufacture laser-machined preforms at the Institut für Textiltechnik (ITA) at RWTH Aachen University.

The USP laser beam is guided through a hollow core fiber from the beam source to a galvo scanner on the articulated robot arm. Thanks to the stabilized laser beam, the beam guidance system – which uses no mirrors – can easily follow the highly dynamic movements of the scanner across the CFRP preform. The benefits of precise, zero-defect laser ablation allow the robot-guided USP laser to drill perfectly proportioned holes for inserts and other purposes. What’s more, the final matrix infusion used in this method produces a reliable multi-material connection on a consistent basis even without an adhesive. In tests conducted in the CarboLase project, the inserts bonded directly to the matrix material achieved a maximum pull-out force that was up to 50 percent higher than that of conventionally manufactured components with glued-in inserts.

“The dynamic USP laser drilling process is particularly beneficial for lightweight parts used in aviation and automotive engineering,” says Stefan Janssen, scientist in the Micro and Nano Structuring Group at Fraunhofer ILT. “The process is easy to automate and produces stronger connecting elements. This can potentially cut costs and reduce the amount of material required to manufacture CFRP components.”

Fraunhofer ILT at JEC World 2020

Visitors can find out more about laser processes for machining composites the joint AZL booth (hall 5A, L97) at JEC World, which will take place in Paris from March 3 to 5, 2020.

The IGF project AGeD (Investigation of different pre-treatment and joining methods with regard to ageing behaviour and functional properties in the thermal direct joining of metals and plastics) with a period of 2.5 years is funded by the German Federal Ministry of Economics and Energy (BMWi).

The project CarboLase (Highly productive, automated and tailor-made just-in-time CFRP component manufacturing) has received funding from the European Regional Development Fund (ERDF).

Wissenschaftliche Ansprechpartner:

Kira van der Straeten M.Sc.
Micro Joining Group
Telephone +49 241 8906-158

Dipl.-Wirt.-Ing. Christoph Engelmann
Micro Joining Group
Telephone +49 241 8906-217

Dr.-Ing. Stefan Janssen
Micro and Nano Structuring Group
Telephone +49 241 8906-8076

Weitere Informationen:

Petra Nolis M.A. | Fraunhofer-Institut für Lasertechnik ILT

Further reports about: CFRP ILT JEC Lasertechnik Nano RWTH USP fiber laser beam long-term stability plastic

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

Im Focus: Quantum fluctuations sustain the record superconductor

Superconductivity approaching room temperature may be possible in hydrogen-rich compounds at much lower pressures than previously expected

Reaching room-temperature superconductivity is one of the biggest dreams in physics. Its discovery would bring a technological revolution by providing...

Im Focus: New coronavirus module in SORMAS

HZI-developed app for disease control is expanded to stop the spread of the pathogen

At the end of December 2019, the first cases of pneumonia caused by a novel coronavirus were reported from the Chinese city of Wuhan. Since then, infections...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

Latest News

Electric solid propellant -- can it take the heat?

14.02.2020 | Physics and Astronomy

Pitt study uncovers new electronic state of matter

14.02.2020 | Physics and Astronomy

Researchers observe quantum interferences in real-time using a new extreme ultra-violet light spectroscopy technique

14.02.2020 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>