Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Intelligent material improves aerodynamics in cars and aircraft


In order to save energy, aerodynamics is important for cars and aircraft. However, technologies controlling saving of energy are only designed for one speed range. Researchers at Technische Universität Kaiserslautern have developed a more flexible method: Thanks to a so-called shape memory wire, the "intelligent material" can automatically adapt its shape to changing conditions. It can also be tailored to customer requirements and integrated into existing components. The researchers market their material in their start-up “CompActive.” They will present this material at the Hannover Messe from 1 to 5 April at the Rhineland-Palatinate research stand (Hall 2, Stand B40).

In search of prey, eagles circle slowly in the air. Their fan-shaped spread feathers at their wing ends ensure that they are travelling as efficiently as possible at relatively low speed. Thanks to their wings, however, the birds adapt to the new conditions also during a fast nosedive.

They can tailor their actuators to individual customer requirements.

Credits: CompActive

Moritz Hübler and Patricia Schweitzer develop it to market maturity together with their three companions.

Credits: Koziel/TUK

Aircraft have not yet become as flexible as birds of prey. There are technologies on the market that help to improve efficiency. These include, for example, so-called winglets, a kind of curved extension at the tips of the wings. “Turbulators are another example,” says Dr Moritz Hübler from the Institute for Composite Materials (IVW) at the Technische Universität Kaiserslautern (TUK).

“These are a large number of small disturbing surfaces that stabilize the flow on the wing surface. This allows pilots to fly more slowly,” continues his research colleague Patricia Schweitzer. Both have one thing in common: they are only rigid components that do not adapt automatically during flight. “Here, aerodynamics of the aircraft is only designed for certain speeds,” says Hübler.

The technology on which the team around Hübler and Schweitzer is working is similarly flexible as the eagle's wing. It adapts automatically to different speeds and temperatures. Wires made of a shape memory alloy consisting of a nickel-titanium compound are used.

“This is how experts describe the phenomenon that these wires return to their old form after being deformed,” explains Hübler. “When the wires are heated, for example by electric current, they contract.” The wires are applied to a flexible plate made of composite material. Similar to our musculature, a contraction of the wires causes the material to bend.

“Our active material requires less volume and has a lower weight than conventional techniques such as compressed air or electric motors,” explains Schweitzer. They can tailor their modules, or actuators, as the team calls them, to individual customer requirements. “We offer different sizes and they can be used on different materials, such as fibre-reinforced plastic or metal,” Schweitzer continues.

The actuators can also be applied to components in different ways and integrated into electrical systems. “Bonded and screwed joints are possible as well as soldered connections or plugging onto a brass wire,” Schweitzer goes on to explain. The team has already patented the material structure. In their start-up “CompActive”, Hübler and Schweitzer develop it to market maturity together with their three companions Daniel Vogelsanger, Nicolà Hammann and Nils Neblung.

Many new functions are conceivable with this “intelligent material”, such as gap- and bend-free aircraft flaps that automatically improve aerodynamics for different speeds and thus save energy. In flight tests, IVW researchers and partners have already been able to show that their material can also be used in turbulators: they could be easily extended at the touch of a button. “This allows slower, steeper and safer landing approaches without compromising efficiency,” says Hübler.

In order to reduce fuel consumption, a similar area of application is also possible for vehicles. Hübler cites another example: “This technology could be automatically used to achieve optimum aerodynamics at any time by means of existing sensors, regardless of whether you are driving in the city or on the motorway.”

Another field of application is ventilation and heating systems, but the technology is also interesting for a cooling system for protective helmets in the sports sector or for innovative lamp designs.

At the Hannover Messe, the researchers will present a model of an aircraft wing in which six actuators are installed that can be controlled individually. They also present a technique in which their material is contracted and thus remains in a bent state without consuming energy. “We use a simple latch with which we fix the system in this state; it resembles latches in a garden gate, for example,” says Schweitzer. They have also developed another option for this technology, using a kind of click system that is comparable to that of a ballpoint pen, which ensures that the refill remains outside.

The start-up project is funded by the Federal Ministry of Economics and Technology (BMWi) as an “EXIST research transfer project” at the Institute for Composite Materials in the first funding phase until the beginning of 2020. In their work, the young entrepreneurs are supported by TUK and the Institute for Composite Materials. The team has already established contact with customers and is planning a first series production for the coming year.

Further information can be found at

Wissenschaftliche Ansprechpartner:

Dr Moritz Hübler
Institute for Composite Materials / CompActive
Phone: +49(0)631 2017-443

Patricia Schweitzer
Institute for Composite Materials / CompActive
Phone: +49(0)631 2017-451

Klaus Dosch, Department of Technology and Innovation, is organizing the presentation of the researchers of the TU Kaiserslautern at the fair. He is the contact partner for companies and, among other things, establishes contacts to science.

Contact: Klaus Dosch, Email: dosch[at], Phone (also during the fair): +49(0)631 205-3001

Melanie Löw | Technische Universität Kaiserslautern
Further information:

More articles from Trade Fair News:

nachricht IFA 2019: Intelligent sensor technology for a better posture at the workplace
22.08.2019 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht IFA 2019: Architects develop 5G transmission masts made of wood for a sustainable city image
21.08.2019 | Technische Universität Kaiserslautern

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hamburg and Kiel researchers observe spontaneous occurrence of skyrmions in atomically thin cobalt films

Since their experimental discovery, magnetic skyrmions - tiny magnetic knots - have moved into the focus of research. Scientists from Hamburg and Kiel have now been able to show that individual magnetic skyrmions with a diameter of only a few nanometres can be stabilised in magnetic metal films even without an external magnetic field. They report on their discovery in the journal Nature Communications.

The existence of magnetic skyrmions as particle-like objects was predicted 30 years ago by theoretical physicists, but could only be proven experimentally in...

Im Focus: Physicists create world's smallest engine

Theoretical physicists at Trinity College Dublin are among an international collaboration that has built the world's smallest engine - which, as a single calcium ion, is approximately ten billion times smaller than a car engine.

Work performed by Professor John Goold's QuSys group in Trinity's School of Physics describes the science behind this tiny motor.

Im Focus: Quantum computers to become portable

Together with the University of Innsbruck, the ETH Zurich and Interactive Fully Electrical Vehicles SRL, Infineon Austria is researching specific questions on the commercial use of quantum computers. With new innovations in design and manufacturing, the partners from universities and industry want to develop affordable components for quantum computers.

Ion traps have proven to be a very successful technology for the control and manipulation of quantum particles. Today, they form the heart of the first...

Im Focus: Towards an 'orrery' for quantum gauge theory

Experimental progress towards engineering quantized gauge fields coupled to ultracold matter promises a versatile platform to tackle problems ranging from condensed-matter to high-energy physics

The interaction between fields and matter is a recurring theme throughout physics. Classical cases such as the trajectories of one celestial body moving in the...

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

Latest News

Making small intestine endoscopy faster with a pill-sized high-tech camera

23.08.2019 | Medical Engineering

More reliable operation offshore wind farms

23.08.2019 | Power and Electrical Engineering

Tracing the evolution of vision

23.08.2019 | Life Sciences

Science & Research
Overview of more VideoLinks >>>