Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infrared Emitters allow particle-free plastic welding

03.08.2012
Intake pipes, ventilation parts and containers for brake fluid or windscreen wiper water in cars have to withstand pressure.

These pipes and containers are often injection molded as plastic half shells before being welded together to form the finished product. Infrared heating technology helps to join the parts securely together without creating particles in the insides of the tubes. In many cases, a combination of infrared pre-heating and vibration welding can prove particularly advantageous.





Infrared heating helps to achieve particle-free welding of plastic tubes.

Copyright Heraeus Noblelight 2012

The infrared radiation melts the plastic surface so that particle formation is minimized during the vibration process. This creates a more secure joint and a flawless container. Heraeus Noblelight will be showing application-optimized infrared emitters for plastics processing on Stand 1121, Hall B1 at Fakuma, which takes place in Friedrichshafen from 16 to 20 October.

Injection molded pressure tubes are used in radiators or in turbo motors and containers for water or brake fluid. Welding seams must withstand pressure and whether in the turbo or in the brake fluid, plastic particles created during production will disrupt the component function. Infrared radiation is transferred without contact and generates heat directly in the work piece. As a result it is superior to conventional methods such as heating by contact plates. Also unlike welding with contact heat, infrared heating leaves no hot plastic on the heating source. Consequently, plastic parts can be welded reproducibly in seconds.

Infrared radiation melts the target surfaces in a targeted manner in a matter of seconds and these can then be joined by simply pressing them together. According to the type of plastic, large particles can be created during vibration welding and these can find their way subsequently into cooling water, servo oil or brake fluid, with adverse effect on function. It can also be uncomfortable for a driver to have particles blown into the inside of the car through the air ducting.

A combination of infrared emitters with vibration welders provides a practical remedy to the problem. An infrared module passes between two plastic parts and heats the surfaces of both parts without contact. When the specified temperature is achieved, the infrared module is removed and the actual welding process begins. Tests carried out with users have shown that the seams welded with the aid of infrared radiation are able to withstand very high pressure.

Infrared Emitters Are Exactly Matched

Shape, color and material properties of the plastic part define the result of the welding or joining process:

• Short wave emitters and Carbon infrared emitters respond to control commands within seconds. As a result, the correct intensity and duration of the radiation can be selected to melt different plastics.

• Filler materials have influence on the welding result. Mineral fillers in plastics provide fire-resistance and reinforcement with glass fibers improves the pressure stability of containers. Unfortunately, the higher the filler content, the harder are the plastics to weld. Fire-retarding materials melt with difficulty and a glass fiber content greater than 35% can make the welding process almost impossible. Unlike contact plates, infrared emitters cannot be damaged by glass fibers, as heating is contact-free.

• Black plastics absorb infrared radiation generally better than white or transparent plastics. Test have shown that half shells of polyamide, which are joined together to create a hollow body, reach the target temperature three times faster in black material than in light colored materials.

• A real challenge is the welding of three dimensional shapes. The more complex the structure, the more difficult the complete process. Vibration welding under these conditions is completely impossible because some shapes can no longer oscillate. Infrared offers a solution here as it is possible to shape emitters three-dimensionally.

• Standard surface emitters can be used for different geometries if they are matched to the plastic component by cover masks. As a result, several components can be processed simply and quickly with one surface emitter. In addition, the cover masks minimize any stray radiation into the immediate environment of the welding system.

Carefully chosen infrared emitters help to provide high quality joining of plastic components for cars. As the infrared emitters need be switched on only when the heat is actually required, welding with infrared heat is also extremely energy-efficient.

Heraeus, the precious metals and technology group headquartered in Hanau, Germany, is a global, private company with more than 160 years of tradition. Our fields of competence include precious metals, materials, and technologies, sensors, biomaterials, and medical products, as well as dental products, quartz glass, and specialty light sources. With product revenues of €4.8 billion and precious metal trading revenues of €21.3 billion, as well as more than 13,300 employees in over 120 subsidiaries worldwide, Heraeus holds a leading position in its global markets.

Heraeus Noblelight GmbH with its headquarters in Hanau and with subsidiaries in the USA, Great Britain, France, China and Australia, is one of the technology- and market-leaders in the production of specialist light sources. In 2011, Heraeus Noblelight had an annual turnover of 103 Million € and employed 731 people worldwide. The organization develops, manufactures and markets infrared and ultraviolet emitters for applications in industrial manufacture, environmental protection, medicine and cosmetics, research, development and analytical measurement techniques.

For further information, please contact:

Technical:
Heraeus Noblelight GmbH
Reinhard-Heraeus-Ring 7
D-63801 Kleinostheim
Tel +49 6181/35-8545, Fax +49 6181/35-16 8545
E-Mail hng-infrared@heraeus.com
Press:
Dr. Marie-Luise Bopp
Heraeus Noblelight GmbH,
Abteilung Marketing/Werbung
Tel +49 6181/35-8547, Fax +49 6181/35-16 8547
E-Mail marie-luise.bopp@heraeus.com

Dr. Marie-Luise Bopp | Heraeus Noblelight GmbH
Further information:
http://www.heraeus-noblelight.com/infrared

More articles from Trade Fair News:

nachricht AchemAsia 2019 will take place in Shanghai
15.06.2018 | DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V.

nachricht Insects supply chitin as a raw material for the textile industry
05.06.2018 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication

16.07.2018 | Physics and Astronomy

New players, standardization and digitalization for more rail freight transport

16.07.2018 | Transportation and Logistics

Researchers discover natural product that could lead to new class of commercial herbicide

16.07.2018 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>