Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infrared Emitters Improve Lacquered Surfaces

23.01.2012
Application Specialists at the Paint Expo Exhibition

Many screens, internal claddings in cars and high value cosmetic packages are manufactured from plastics and contain a protective lacquer or finishing. The drying of the coating on the plastic components is not a trivial matter, for the surfaces need to be perfectly cured without applying to much heat to the plastic. Infrared heaters transfer energy in a contact-free manner and are easy to control. Consequently, the heat is precisely dispensed and the quality of the lacquered surface is improved.


Highly polished plastic surfaces are achieved with UV lacquers, whose curing is improved with the aid of infrared. Copyright Heraeus Noblelight 2012

The combination of infrared heat and UV lacquers is innovative. On one hand, the energy efficiency of the lacquer curing is improved and on the other hand the curing itself is significantly better through the pre-heating.

Heraeus Noblelight is presenting infrared emitters in Hall 1 on stand 1519 at the Paint Expo exhibition, which takes place in Karlsruhe in April, when there will also be an opportunity for face-to-face discussions with application specialists.

Whether it is matt black or a high value shiny varnish, car interiors often feature decorative varnishes. Lipstick tubes, face cream containers and powder compacts often have to provide some indication of their high value contents. These containers are manufactured in plastics, as are switches and levers in cars, and are then improved by coating. This is where UV lacquer is often used.

Energy-Efficiency in Lacquer Drying

UV powder lacquer is heated by infrared emitters to around 100-120ºC and then cured using UV radiation. As opposed to the curing of conventional powder lacquers, there is no need for any further heating. In this way, functional components can be coated exceptionally energy-efficiently and coating/curing plants have minimum space requirements. All infrared emitters, which are easy to control and regulate, like short wave, fast-response medium wave and carbon infrared emitters with response times in the order of seconds, are well suited for melting powder lacquer before UV curing.

Infrared emitters transfer energy in a contact-free manner and generate heat directly in the material. As a result, there is minimum air movement during heating unlike hot air ovens. Consequently, infrared drying minimizes the danger of dust inclusions in the lacquer and improves surface quality.

Quality Improvement by Using Infrared with UV Lacquers

Some plastic surfaces have a scratch-resistant lacquer, providing a mirror surface. This prevents fingerprints from spoiling the high gloss finish or hand- or sun creams from attacking the plastic.

These varnishes are often UV varnishes, which use UV radiation to initiate the curing. This curing is carried out much better at higher temperatures or it can even be optimized by pre-heating. For this reason, plastic components of radio screens, selector levers or lipstick tubes are first pre-heated with infrared. If the UV lacquer is melted first by the heat and then cured with the UV radiation, the surface quality is improved.

Infrared heat is then always used when heating processes must meet particular specifications in terms of space, throughput or quality. Infrared emitters can be precisely matched to product and process and this saves energy and costs.

Heraeus Noblelight GmbH with its headquarters in Hanau and with subsidiaries in the USA, Great Britain, France, China and Australia, is one of the technology- and market-leaders in the production of specialist light sources. In 2010, Heraeus Noblelight had an annual turnover of 98.9 Million € and employed 689 people worldwide. The organisation develops, manufactures and markets infrared and ultraviolet emitters for applications in industrial manufacture, environmental protection, medicine and cosmetics, research, development and analytical measurement techniques

The precious metals and technology group Heraeus headquartered in Hanau, Germany, is a global, family company with 160 years of tradition. Our businesses include precious metals, sensors, dental and medical products, quartz glass, and specialty lighting sources. With product revenues of € 4.1 billion and precious metal trading revenues of € 17.9 billion, as well as over 12,900 employees in more than 120 companies worldwide, Heraeus holds a leading position in its global markets.

For further information, please contact:

Technical:
Heraeus Noblelight GmbH
Reinhard-Heraeus-Ring 7
D-63801 Kleinostheim
Tel +49 6181/35-8545, Fax +49 6181/35-16 8545
E-Mail hng-infrared@heraeus.com
Press:
Dr. Marie-Luise Bopp
Heraeus Noblelight GmbH,
Abteilung Marketing/Werbung
Tel +49 6181/35-8547, Fax +49 6181/35-16 8547
E-Mail marie-luise.bopp@heraeus.com

Dr. Marie-Luise Bopp | Heraeus Noblelight GmbH
Further information:
http://www.heraeus-noblelight.com/infrared

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

X-ray scattering shines light on protein folding

10.07.2020 | Life Sciences

Looking at linkers helps to join the dots

10.07.2020 | Materials Sciences

Surprisingly many peculiar long introns found in brain genes

10.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>