Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infrared Emitters Improve Lacquered Surfaces

23.01.2012
Application Specialists at the Paint Expo Exhibition

Many screens, internal claddings in cars and high value cosmetic packages are manufactured from plastics and contain a protective lacquer or finishing. The drying of the coating on the plastic components is not a trivial matter, for the surfaces need to be perfectly cured without applying to much heat to the plastic. Infrared heaters transfer energy in a contact-free manner and are easy to control. Consequently, the heat is precisely dispensed and the quality of the lacquered surface is improved.


Highly polished plastic surfaces are achieved with UV lacquers, whose curing is improved with the aid of infrared. Copyright Heraeus Noblelight 2012

The combination of infrared heat and UV lacquers is innovative. On one hand, the energy efficiency of the lacquer curing is improved and on the other hand the curing itself is significantly better through the pre-heating.

Heraeus Noblelight is presenting infrared emitters in Hall 1 on stand 1519 at the Paint Expo exhibition, which takes place in Karlsruhe in April, when there will also be an opportunity for face-to-face discussions with application specialists.

Whether it is matt black or a high value shiny varnish, car interiors often feature decorative varnishes. Lipstick tubes, face cream containers and powder compacts often have to provide some indication of their high value contents. These containers are manufactured in plastics, as are switches and levers in cars, and are then improved by coating. This is where UV lacquer is often used.

Energy-Efficiency in Lacquer Drying

UV powder lacquer is heated by infrared emitters to around 100-120ºC and then cured using UV radiation. As opposed to the curing of conventional powder lacquers, there is no need for any further heating. In this way, functional components can be coated exceptionally energy-efficiently and coating/curing plants have minimum space requirements. All infrared emitters, which are easy to control and regulate, like short wave, fast-response medium wave and carbon infrared emitters with response times in the order of seconds, are well suited for melting powder lacquer before UV curing.

Infrared emitters transfer energy in a contact-free manner and generate heat directly in the material. As a result, there is minimum air movement during heating unlike hot air ovens. Consequently, infrared drying minimizes the danger of dust inclusions in the lacquer and improves surface quality.

Quality Improvement by Using Infrared with UV Lacquers

Some plastic surfaces have a scratch-resistant lacquer, providing a mirror surface. This prevents fingerprints from spoiling the high gloss finish or hand- or sun creams from attacking the plastic.

These varnishes are often UV varnishes, which use UV radiation to initiate the curing. This curing is carried out much better at higher temperatures or it can even be optimized by pre-heating. For this reason, plastic components of radio screens, selector levers or lipstick tubes are first pre-heated with infrared. If the UV lacquer is melted first by the heat and then cured with the UV radiation, the surface quality is improved.

Infrared heat is then always used when heating processes must meet particular specifications in terms of space, throughput or quality. Infrared emitters can be precisely matched to product and process and this saves energy and costs.

Heraeus Noblelight GmbH with its headquarters in Hanau and with subsidiaries in the USA, Great Britain, France, China and Australia, is one of the technology- and market-leaders in the production of specialist light sources. In 2010, Heraeus Noblelight had an annual turnover of 98.9 Million € and employed 689 people worldwide. The organisation develops, manufactures and markets infrared and ultraviolet emitters for applications in industrial manufacture, environmental protection, medicine and cosmetics, research, development and analytical measurement techniques

The precious metals and technology group Heraeus headquartered in Hanau, Germany, is a global, family company with 160 years of tradition. Our businesses include precious metals, sensors, dental and medical products, quartz glass, and specialty lighting sources. With product revenues of € 4.1 billion and precious metal trading revenues of € 17.9 billion, as well as over 12,900 employees in more than 120 companies worldwide, Heraeus holds a leading position in its global markets.

For further information, please contact:

Technical:
Heraeus Noblelight GmbH
Reinhard-Heraeus-Ring 7
D-63801 Kleinostheim
Tel +49 6181/35-8545, Fax +49 6181/35-16 8545
E-Mail hng-infrared@heraeus.com
Press:
Dr. Marie-Luise Bopp
Heraeus Noblelight GmbH,
Abteilung Marketing/Werbung
Tel +49 6181/35-8547, Fax +49 6181/35-16 8547
E-Mail marie-luise.bopp@heraeus.com

Dr. Marie-Luise Bopp | Heraeus Noblelight GmbH
Further information:
http://www.heraeus-noblelight.com/infrared

More articles from Trade Fair News:

nachricht Plastic Optics from Aachen at Fakuma 2018
08.10.2018 | Fraunhofer-Institut für Produktionstechnologie IPT

nachricht New enclosure gives a boost to electrical engineering companies
26.09.2018 | Rittal GmbH & Co. KG

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

Im Focus: Dynamics of individual proteins

New measurement method allows researchers to precisely follow the movement of individual molecules over long periods of time

The function of proteins – the molecular tools of the cell – is governed by the interplay of their structure and dynamics. Advances in electron microscopy have...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

Major Project: The New Silk Road

01.10.2018 | Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

 
Latest News

Physics: Not everything is where it seems to be

15.10.2018 | Physics and Astronomy

Microfluidic molecular exchanger helps control therapeutic cell manufacturing

15.10.2018 | Life Sciences

Link between Gut Flora and Multiple Sclerosis Discovered

15.10.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>