Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Increasing the Productivity of Ultrafast Laser Systems

17.06.2015

To advance the development of ultrafast laser systems for the industry, research institutes are now concentrating on increasing system productivity. To achieve this goal, Fraunhofer ILT is working in several different ways: on the one hand it is building stronger systems with record performances in the kW range. On the other hand, its researchers are working on tailor-made solutions for different applications. At LASER 2015, Fraunhofer ILT will be presenting, among others, a module for pulse shortening and a test system for an adjustable infrared laser with high power, each of which show new ways to increase efficiency in materials processing.

At the last UKP-Workshop: Ultrafast Laser Technology in Aachen from Fraunhofer ILT in April 2015, the participants agreed that an increase in productivity is currently the most important issue in industrial ultrafast lasers. The increase depends on many parameters, for example, the pulse energy, repetition rate and process control. Shorter pulses allow for greater precision and completely new machining processes, e.g., by multiphoton absorption or filament formation in glass.


Thin Disc amplifier with 1.5 kW

© Fraunhofer ILT, Aachen, Germany

New Module to Shorten the Pulses of Ultrafast Lasers with Highest Average Power

Fraunhofer ILT has now developed an optical module that shortens the pulse duration of powerful ultrafast lasers by a factor of four. The compact module is suitable for use in lasers with up to 1 kW average power and energy from 10 to 200 µJ. A 1 ps pulse can thus be compressed to about 250 fs, during which less than 10 percent of energy is lost and the beam quality is maintained.

The patent-pending technology of the pulse-shortening module was funded by the Federal Ministry of Education and Research (BMBF) as part of the FOCUS project. In the further development of the module, significantly higher pulse energies are to be achieved.

The pulse-shortening module can be combined with a femtosecond laser in the power range of 150 W, which has been newly developed at Fraunhofer ILT. The module has been fine-tuned for robustness and economy thanks to its particularly simple design. In its power class, it is even superior to the significantly more powerful INNOSLAB laser. Both concepts are characterized by their almost diffraction-limited beam quality.

New Record: Femtosecond Laser with 1.5 kW

By combining Thin Disk and INNOSLAB amplifiers, Fraunhofer ILT has set a new record for ultrafast lasers: the system delivers 1.5 kW average power at a pulse duration of 710 fs. Further optimization specifically of the thin-disk amplifier system should enable power beyond the 2 kW limit. This development has been supported by the BMBF as part of the FOCUS Project, as well as by the TRUMPF Group.

Industrial laser systems in this power class are particularly suitable for the processing of large parts, for example, those made of carbon fiber reinforced plastic (CFRP).

Powerful USP system for the SWIR Range

New beam sources for the infrared range at wavelengths of 1.5 to 3.5 µm (SWIR) provide an example of ultrafast laser technology solutions by Fraunhofer ILT, tailored for specific applications. Many technically and economically interesting material classes have an extremely high absorption in SWIR, which makes a series of innovative applications possible. So far, however, there has been a lack of sufficiently powerful lasers in this range.

Scientists at Fraunhofer ILT have now developed a test system that delivers laser power even over 20 W at 1.6 to 3.0 µm. The pulse duration can be between 900 fs and 1.5 ns. They are currently working on power scaling to more than 50 W. The test system can be adapted to different drive lasers and, thus, provide a wide range of application parameters.
The new system allows users to make both feasibility studies and provides process-optimized beam parameters for production.

Fraunhofer ILT at the LASER World of Photonics in Munich, Germany

From 22 - 25 June 2015 experts from the Fraunhofer ILT will be showing, among others, the module for pulse shortening for ultrafast laser systems and the test system for adjustable infrared lasers with high power at the Fraunhofer joint stand A3.121.
The researchers will also be presenting the exhibits at the Fraunhofer media tour on Tuesday, June 23, 2015. It starts at 11:00 a.m. at Booth 341 in Hall B3 and ends at approximately 12:00 midday at Booth 121 in Hall A3, followed by a discussion and light refreshments.

Contact

Dr. Peter Rußbüldt
Group Manager Ultrafast Lasers
Telephone +49 241 8906-303
peter.russbueldt@ilt.fraunhofer.de

Dipl.-Phys. Thomas Sartorius
Ultrafast Lasers
Telephone +49 241 8906-615
thomas.sartorius@ilt.fraunhofer.de

Dr. Bernd Jungbluth
Group Manager Nonlinear Optics and Tunable Lasers
Telephone +49 241 8906-414
bernd.jungbluth@ilt.fraunhofer.de

Fraunhofer-Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen, Germany

Weitere Informationen:

http://www.ilt.fraunhofer.de

Petra Nolis | Fraunhofer-Institut für Lasertechnik ILT

More articles from Trade Fair News:

nachricht AchemAsia 2019 will take place in Shanghai
15.06.2018 | DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V.

nachricht Insects supply chitin as a raw material for the textile industry
05.06.2018 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>