Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Increasing the Productivity of Ultrafast Laser Systems

17.06.2015

To advance the development of ultrafast laser systems for the industry, research institutes are now concentrating on increasing system productivity. To achieve this goal, Fraunhofer ILT is working in several different ways: on the one hand it is building stronger systems with record performances in the kW range. On the other hand, its researchers are working on tailor-made solutions for different applications. At LASER 2015, Fraunhofer ILT will be presenting, among others, a module for pulse shortening and a test system for an adjustable infrared laser with high power, each of which show new ways to increase efficiency in materials processing.

At the last UKP-Workshop: Ultrafast Laser Technology in Aachen from Fraunhofer ILT in April 2015, the participants agreed that an increase in productivity is currently the most important issue in industrial ultrafast lasers. The increase depends on many parameters, for example, the pulse energy, repetition rate and process control. Shorter pulses allow for greater precision and completely new machining processes, e.g., by multiphoton absorption or filament formation in glass.


Thin Disc amplifier with 1.5 kW

© Fraunhofer ILT, Aachen, Germany

New Module to Shorten the Pulses of Ultrafast Lasers with Highest Average Power

Fraunhofer ILT has now developed an optical module that shortens the pulse duration of powerful ultrafast lasers by a factor of four. The compact module is suitable for use in lasers with up to 1 kW average power and energy from 10 to 200 µJ. A 1 ps pulse can thus be compressed to about 250 fs, during which less than 10 percent of energy is lost and the beam quality is maintained.

The patent-pending technology of the pulse-shortening module was funded by the Federal Ministry of Education and Research (BMBF) as part of the FOCUS project. In the further development of the module, significantly higher pulse energies are to be achieved.

The pulse-shortening module can be combined with a femtosecond laser in the power range of 150 W, which has been newly developed at Fraunhofer ILT. The module has been fine-tuned for robustness and economy thanks to its particularly simple design. In its power class, it is even superior to the significantly more powerful INNOSLAB laser. Both concepts are characterized by their almost diffraction-limited beam quality.

New Record: Femtosecond Laser with 1.5 kW

By combining Thin Disk and INNOSLAB amplifiers, Fraunhofer ILT has set a new record for ultrafast lasers: the system delivers 1.5 kW average power at a pulse duration of 710 fs. Further optimization specifically of the thin-disk amplifier system should enable power beyond the 2 kW limit. This development has been supported by the BMBF as part of the FOCUS Project, as well as by the TRUMPF Group.

Industrial laser systems in this power class are particularly suitable for the processing of large parts, for example, those made of carbon fiber reinforced plastic (CFRP).

Powerful USP system for the SWIR Range

New beam sources for the infrared range at wavelengths of 1.5 to 3.5 µm (SWIR) provide an example of ultrafast laser technology solutions by Fraunhofer ILT, tailored for specific applications. Many technically and economically interesting material classes have an extremely high absorption in SWIR, which makes a series of innovative applications possible. So far, however, there has been a lack of sufficiently powerful lasers in this range.

Scientists at Fraunhofer ILT have now developed a test system that delivers laser power even over 20 W at 1.6 to 3.0 µm. The pulse duration can be between 900 fs and 1.5 ns. They are currently working on power scaling to more than 50 W. The test system can be adapted to different drive lasers and, thus, provide a wide range of application parameters.
The new system allows users to make both feasibility studies and provides process-optimized beam parameters for production.

Fraunhofer ILT at the LASER World of Photonics in Munich, Germany

From 22 - 25 June 2015 experts from the Fraunhofer ILT will be showing, among others, the module for pulse shortening for ultrafast laser systems and the test system for adjustable infrared lasers with high power at the Fraunhofer joint stand A3.121.
The researchers will also be presenting the exhibits at the Fraunhofer media tour on Tuesday, June 23, 2015. It starts at 11:00 a.m. at Booth 341 in Hall B3 and ends at approximately 12:00 midday at Booth 121 in Hall A3, followed by a discussion and light refreshments.

Contact

Dr. Peter Rußbüldt
Group Manager Ultrafast Lasers
Telephone +49 241 8906-303
peter.russbueldt@ilt.fraunhofer.de

Dipl.-Phys. Thomas Sartorius
Ultrafast Lasers
Telephone +49 241 8906-615
thomas.sartorius@ilt.fraunhofer.de

Dr. Bernd Jungbluth
Group Manager Nonlinear Optics and Tunable Lasers
Telephone +49 241 8906-414
bernd.jungbluth@ilt.fraunhofer.de

Fraunhofer-Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen, Germany

Weitere Informationen:

http://www.ilt.fraunhofer.de

Petra Nolis | Fraunhofer-Institut für Lasertechnik ILT

More articles from Trade Fair News:

nachricht Sanitized siphons – fewer hospital germs
18.04.2019 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Power Electronics: Ceramic Embedding Gives a Boost to Wide Bandgap Semiconductor Devices
12.04.2019 | Fraunhofer IISB

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Marine Skin dives deeper for better monitoring

23.04.2019 | Information Technology

Geomagnetic jerks finally reproduced and explained

23.04.2019 | Earth Sciences

Overlooked molecular machine in cell nucleus may hold key to treating aggressive leukemia

23.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>