Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

IMHP technology from DuPont can decrease cycle time during the injection moulding of semi-crystalline thermoplastics

18.10.2011
New IMHP technology from DuPont enables significant productivity increases during the injection moulding of semi-crystalline thermoplastics, which, due to their high rate of volume shrinkage during cooling, require longer holding times.

In contrast to standard injection moulding procedure, the required hold pressure is applied within the mould (IMHP = In-Mould Hold Pressure). This means that the plasticising unit can already be withdrawn from the mould at the start of the hold pressure phase and, almost immediately after injection of the material, dosing of the screw can be resumed.


Photo: DuPont
In IMHP technology (In-Mould Hold Pressure) from DuPont, hold pressure is applied using a separate mechanism integrated within the mould during the screw-dosing phase. This parallel arrangement of two injection moulding phases helps can help reduce cycle time. The actual time saving is largely determined by the degree of crystallinity of the processed material and the shot volume.

In other words, the two phases of applying hold pressure and dosing, which would traditionally follow on from each other, can now be carried out simultaneously. As a consequence the cycle time is reduced by the entire dosing time, if this is shorter than the hold pressure time, or, in the reverse case, by the entire hold pressure time. The resulting gain in time and productivity increases with dosage volume. Particularly in the case of large shot volumes or relatively short overall cycle times, the time savings can be up to 30%.

The IMHP process from DuPont offers two different methods - each integrated within the mould - for applying hold pressure and the successive feeding of molten material. As part of the first method, a hydraulically-operated piston, which is integrated in the movable side of the mould, is immersed in a specially provisioned and appropriately-dosed melt cushion. Alternatively, the equivalent melt volume is available on the stationary side of the mould in the hot runner. In this case, the molten material is pressed into the cavity using a needle-valve-like mechanism. Both methods are currently being trialled and refined by DuPont, with a current emphasis on minimising the additional space required.

"We have conducted numerous injection moulding trials with different semi-crystalline thermoplastics grades at our Technical Center in Meyrin, Switzerland, and were able to demonstrate, on the basis of producing standard bars used for tensile testing, the potential efficiency improvements," comments Ernst A. Poppe, European manager for application and processing technology at DuPont Performance Polymers. "IMHP technology proved itself to be particularly beneficial when moulding DuPont™ Delrin® acetal resin, for which - as is the case with all grades of this particular family of thermoplastics - the hold pressure time constitutes a large proportion of its overall cycle time.

Additionally we were able to demonstrate that there were no significant changes in terms of dimensional stability and mechanical properties between standard injection-moulded samples and such produced with IMHP technology. The next step will be for us to work with moulders, hot runner and machinery producers in refining the engineering aspects of the process and thereby ensuring market entry for this time- and cost-saving technology for the moulding of semi-crystalline thermoplastics."

DuPont Performance Polymers is committed to working with customers throughout the world to develop new products, components and systems that help reduce dependence on fossil fuels and protect people and the environment.

With more than 40 manufacturing, development and research centers throughout the world, DuPont Performance Polymers uses the industry’s broadest portfolio of plastics, elastomers, renewably sourced polymers, filaments and high-performance parts and shapes to deliver cost-effective solutions to customers in aerospace, automotive, consumer, electrical, electronic, industrial, sporting goods and other diversified industries.

DuPont (NYSE: DD) has been bringing world-class science and engineering to the global marketplace in the form of innovative products, materials, and services since 1802. The company believes that by collaborating with customers, governments, NGOs, and thought leaders we can help find solutions to such global challenges as providing enough healthy food for people everywhere, decreasing dependence on fossil fuels, and protecting life and the environment. For additional information about DuPont and its commitment to inclusive innovation, please visit www.dupont.com.

The DuPont Oval Logo, DuPont™, The miracles of science™ and all product names denoted with ® are trademarks or registered trademarks of E.I. Du Pont de Nemours and Company or its affiliates.

PP-Fakuma-2011-20

Press contact (UK, Benelux, Scandinavia)
Andrew Wilkins
Tel.: +44 (0)1353 663350
Fax: +44 (0)1353 663350
Email: dupont@plasticspr.co.uk
DuPont press contact
Rémi Daneyrole
Tel.: +41 (0)22 717 54 19
Fax: +41 (0)22 580 22 45

Ursula Herrmann | Konsens Public Relations
Further information:
http://www.dupont.com

More articles from Trade Fair News:

nachricht Fingerprint spectroscopy within a millisecond
24.06.2019 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

nachricht Release agent-free: ReleasePLAS® technology replaces silicone coating in wax injection molding
21.06.2019 | Fraunhofer IFAM

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

'Sneezing' plants contribute to disease proliferation

24.06.2019 | Agricultural and Forestry Science

Researchers find new mutation in the leptin gene

24.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>