Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

IMHP technology from DuPont can decrease cycle time during the injection moulding of semi-crystalline thermoplastics

18.10.2011
New IMHP technology from DuPont enables significant productivity increases during the injection moulding of semi-crystalline thermoplastics, which, due to their high rate of volume shrinkage during cooling, require longer holding times.

In contrast to standard injection moulding procedure, the required hold pressure is applied within the mould (IMHP = In-Mould Hold Pressure). This means that the plasticising unit can already be withdrawn from the mould at the start of the hold pressure phase and, almost immediately after injection of the material, dosing of the screw can be resumed.


Photo: DuPont
In IMHP technology (In-Mould Hold Pressure) from DuPont, hold pressure is applied using a separate mechanism integrated within the mould during the screw-dosing phase. This parallel arrangement of two injection moulding phases helps can help reduce cycle time. The actual time saving is largely determined by the degree of crystallinity of the processed material and the shot volume.

In other words, the two phases of applying hold pressure and dosing, which would traditionally follow on from each other, can now be carried out simultaneously. As a consequence the cycle time is reduced by the entire dosing time, if this is shorter than the hold pressure time, or, in the reverse case, by the entire hold pressure time. The resulting gain in time and productivity increases with dosage volume. Particularly in the case of large shot volumes or relatively short overall cycle times, the time savings can be up to 30%.

The IMHP process from DuPont offers two different methods - each integrated within the mould - for applying hold pressure and the successive feeding of molten material. As part of the first method, a hydraulically-operated piston, which is integrated in the movable side of the mould, is immersed in a specially provisioned and appropriately-dosed melt cushion. Alternatively, the equivalent melt volume is available on the stationary side of the mould in the hot runner. In this case, the molten material is pressed into the cavity using a needle-valve-like mechanism. Both methods are currently being trialled and refined by DuPont, with a current emphasis on minimising the additional space required.

"We have conducted numerous injection moulding trials with different semi-crystalline thermoplastics grades at our Technical Center in Meyrin, Switzerland, and were able to demonstrate, on the basis of producing standard bars used for tensile testing, the potential efficiency improvements," comments Ernst A. Poppe, European manager for application and processing technology at DuPont Performance Polymers. "IMHP technology proved itself to be particularly beneficial when moulding DuPont™ Delrin® acetal resin, for which - as is the case with all grades of this particular family of thermoplastics - the hold pressure time constitutes a large proportion of its overall cycle time.

Additionally we were able to demonstrate that there were no significant changes in terms of dimensional stability and mechanical properties between standard injection-moulded samples and such produced with IMHP technology. The next step will be for us to work with moulders, hot runner and machinery producers in refining the engineering aspects of the process and thereby ensuring market entry for this time- and cost-saving technology for the moulding of semi-crystalline thermoplastics."

DuPont Performance Polymers is committed to working with customers throughout the world to develop new products, components and systems that help reduce dependence on fossil fuels and protect people and the environment.

With more than 40 manufacturing, development and research centers throughout the world, DuPont Performance Polymers uses the industry’s broadest portfolio of plastics, elastomers, renewably sourced polymers, filaments and high-performance parts and shapes to deliver cost-effective solutions to customers in aerospace, automotive, consumer, electrical, electronic, industrial, sporting goods and other diversified industries.

DuPont (NYSE: DD) has been bringing world-class science and engineering to the global marketplace in the form of innovative products, materials, and services since 1802. The company believes that by collaborating with customers, governments, NGOs, and thought leaders we can help find solutions to such global challenges as providing enough healthy food for people everywhere, decreasing dependence on fossil fuels, and protecting life and the environment. For additional information about DuPont and its commitment to inclusive innovation, please visit www.dupont.com.

The DuPont Oval Logo, DuPont™, The miracles of science™ and all product names denoted with ® are trademarks or registered trademarks of E.I. Du Pont de Nemours and Company or its affiliates.

PP-Fakuma-2011-20

Press contact (UK, Benelux, Scandinavia)
Andrew Wilkins
Tel.: +44 (0)1353 663350
Fax: +44 (0)1353 663350
Email: dupont@plasticspr.co.uk
DuPont press contact
Rémi Daneyrole
Tel.: +41 (0)22 717 54 19
Fax: +41 (0)22 580 22 45

Ursula Herrmann | Konsens Public Relations
Further information:
http://www.dupont.com

More articles from Trade Fair News:

nachricht AchemAsia 2019 will take place in Shanghai
15.06.2018 | DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V.

nachricht Insects supply chitin as a raw material for the textile industry
05.06.2018 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>