Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

IAA: Glass-like coatings for automotive parts combine protection with beautiful colour

08.09.2015

Today's car enthusiasts have a diverse range of requirements: popular issues that concern them include safety in the vehicle, a good driving experience, a powerful engine and sophisticated technology. 

If drivers want to make an impression with their vehicle, decorative elements such as coloured wheel rims, brake calipers, exhausts, footboards or bodywork and engine components are increasingly being added. In an ideal scenario, it is possible to combine decorative coatings with protection from corrosion and wear.


Glass-like coatings for automotive parts combine protection with beautiful colour.

Copyright: INM; free within this press release

INM will be presenting such coatings at this year's IAA International Motor Show. It will present its results in cooperation with automotive.saarland in Hall 4.0 at Stand D27.

The coatings have glassy and glass-ceramic properties. They therefore reduce the level of corrosion and wear, susceptibility to scratching or tarnishing and other processes of oxidation on surfaces.

To complement these protective properties, depending on the choice of colour pigments, the INM production method can be used to produce the colours of red, black, green, white and blue for decorative purposes with stability at high temperatures.

These functional coatings are suitable for metallic substrates such as steel, aluminium or alloys or as a protective layer for glassy components.

"In addition to the properties which have been mentioned, our production method also opens up other possibilities," says Peter William de Oliveira, head of the Optical Materials program division. These include possible non-stick properties, a certain flexibility in the layer or also the possibility of electrical insulation as a result of the vitreousness.

The INM uses special silicates for the coatings. They are converted into a sol-gel nanocomposite in a single-step reaction. Depending on the colour pigment and the substrate, this means that surfaces can be hermetically sealed at from 200 to 800 degrees Celsius.

The thickness of these layers ranges from two to ten micrometres. Curved and flat surfaces can easily be covered with the coating in immersion chambers or spray booths.

Your expert at the INM:
Dr. Peter William de Oliveira
INM – Leibniz Institute for New Materials
Head Optical Materials
Head InnovationCenter INM
Phone: +49681-9300-148
peter.oliveira@leibniz-inm.de

INM conducts research and development to create new materials – for today, tomorrow and beyond. Chemists, physicists, biologists, materials scientists and engineers team up to focus on these essential questions: Which material properties are new, how can they be investigated and how can they be tailored for industrial applications in the future? Four research thrusts determine the current developments at INM: New materials for energy application, new concepts for medical surfaces, new surface materials for tribological systems and nano safety and nano bio. Research at INM is performed in three fields: Nanocomposite Technology, Interface Materials, and Bio Interfaces.
INM – Leibniz Institute for New Materials, situated in Saarbrücken, is an internationally leading centre for materials research. It is an institute of the Leibniz Association and has about 210 employees.

Dr. Carola Jung | idw - Informationsdienst Wissenschaft
Further information:
http://www.inm-gmbh.de

More articles from Trade Fair News:

nachricht AchemAsia 2019 will take place in Shanghai
15.06.2018 | DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V.

nachricht Insects supply chitin as a raw material for the textile industry
05.06.2018 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>