Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

IAA Commercial Vehicles 2018: 3D metal printer enables more efficient and lighter components

05.09.2018

Components for commercial vehicles such as excavators, trucks or forklifts should be as light as possible, yet stable and durable. At the Technische Universität Kaiserslautern (TUK), engineers at the Institute for Mechanical and Automotive Design (iMAD) rely on a 3D metal printer with which they can produce components in one piece. This technology permits to produce more filigree and lighter parts than with conventional processes. At the International Motor Show for Commercial Vehicles in Hanover (IAA) from 20 to 27 September at the research stand (Hall 13, Stand A28) of the Centre for Commercial Vehicle Technology (ZNT), researchers will answer questions about their technology.

A whole range of products can nowadays be manufactured using 3D printers. This technology is also used at the TUK campus. The engineers around Professor Dr Roman Teutsch from Kaiserslautern use this technology to develop components for various commercial vehicles.


The engineers around Professor Dr Roman Teutsch from Kaiserslautern use this technology to develop components for various commercial vehicles.

Credits: TUK/Koziel

The advantage of this technology: The printed products can be designed in such a way that they are, for example, light, but still durable and stable. “Such processes are of particular interest to the automotive industry,” says Professor Teutsch, who leads the Institute for Mechanical and Automotive Design and conducts research at the ZNT. “Numerous components used in safety-relevant areas are subject to strict specifications. They must last throughout the life of the vehicle.”

The 3D printer has a relatively large design space of 27.5 x 27.5 x 42 centimetres, so that researchers can also produce larger components for commercial vehicles in one piece. The special thing about it: “With the help of the technology, we can produce parts that are highly complex, such as filigree lattice structures,” says Teutsch. It also simplifies the process for engineers to consider design improvements; for example, when it comes to design structures, optimised to the load path.

Also nature itself sets an example for the team around Teutsch. For example, leaf veins of many plants, which form a supporting structure, or the shape of branch forks play a role here. Today's technology makes it easier to produce such bionic forms. This is interesting for engineers because it makes it possible to design more efficient components. In addition, this technology is suitable for the production of spare parts, for example if the tools of the original component are worn out.

At the IAA Commercial Vehicles, the researchers will be showing various exhibits that they have created using 3D printing and which are intended to provide inspiration for the (commercial) vehicle industry.

The Centre for Commercial Vehicle Technology at the TU Kaiserslautern
At the Centre for Commercial Vehicle Technology (ZNT), more than 150 researchers from more than 13 faculties of computer science, electrical engineering, information technology and mechanical engineering work together on an interdisciplinary basis. For example, they develop techniques for autonomous driving and computing methods that ensure that the technologies in the vehicles function reliably.

They are also working on intelligently networked vehicles and investigating how people and vehicles will interact with each other in the future. Another area of research is increasing energy and CO2 efficiency through lightweight construction, alternative fuels, hybridization and electromobility.

The ZNT is part of the Commercial Vehicle Alliance Kaiserslautern (CVA) and cooperates with many of the research institutes located in the proximity of the university campus. The ZNT is also characterised by close cooperation with commercial vehicle manufacturers and suppliers. Read more at www.uni-kl.de/znt

Wissenschaftliche Ansprechpartner:

Prof Dr-Ing Roman Teutsch
Institute for Mechanical and Automotive Design, iMAD
Phone: +49(0)631 205-3221
E-mail: teutsch[at]mv.uni-kl.de

Melanie Löw | Technische Universität Kaiserslautern

More articles from Trade Fair News:

nachricht Special exhibition area "Microtechnologies for Optical Devices" establishes itself at W3
12.03.2020 | IVAM Fachverband für Mikrotechnik

nachricht Augmented reality system facilitates manual manufacturing of products made of fiber-reinforced composite materials
04.03.2020 | Fraunhofer-Institut für Produktionstechnologie IPT

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: When ions rattle their cage

Electrolytes play a key role in many areas: They are crucial for the storage of energy in our body as well as in batteries. In order to release energy, ions - charged atoms - must move in a liquid such as water. Until now the precise mechanism by which they move through the atoms and molecules of the electrolyte has, however, remained largely unknown. Scientists at the Max Planck Institute for Polymer Research have now shown that the electrical resistance of an electrolyte, which is determined by the motion of ions, can be traced back to microscopic vibrations of these dissolved ions.

In chemistry, common table salt is also known as sodium chloride. If this salt is dissolved in water, sodium and chloride atoms dissolve as positively or...

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

Im Focus: Blocking the Iron Transport Could Stop Tuberculosis

The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply. When the iron transport into the bacteria is inhibited, the pathogen can no longer grow. This opens novel ways to develop targeted tuberculosis drugs.

One of the most devastating pathogens that lives inside human cells is Mycobacterium tuberculosis, the bacillus that causes tuberculosis. According to the...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

13th AKL – International Laser Technology Congress: May 4–6, 2022 in Aachen – Laser Technology Live already this year!

02.04.2020 | Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

 
Latest News

TU Dresden chemists develop noble metal aerogels for electrochemical hydrogen production and other applications

06.04.2020 | Life Sciences

Lade-PV Project Begins: Vehicle-integrated PV for Electrical Commercial Vehicles

06.04.2020 | Power and Electrical Engineering

Lack of Knowledge and Uncertainty about Algorithms in Online Services

06.04.2020 | Social Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>