Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hannover Messe 2018: Cognitive system for predictive acoustic maintenance

19.04.2018

“Measuring and evaluating noise directly on the machine!” Following that goal Fraunhofer IDMT in Oldenburg, Germany, will demonstrate the prototype of a new cognitive system for the predictive maintenance of production facilities at the Hannover Messe from April 23 – 27, 2018, Hall 2, Booth C22. Intelligent battery-powered acoustic sensors process audio signals from machines and systems on the spot. From the information that is forwarded wirelessly to an evaluation unit, it is possible to draw conclusions about the condition of the production facilities and to avoid possible damage. Industrial customers benefit from a cost-effective "Industrie 4.0" solution that minimizes downtime.

Axial piston pumps convert mechanical into hydraulic energy. On construction or agricultural machinery, they help to lift heavy loads or are part of industrial conveyor technology.


Predictive Maintenance at Hannover Messe: configured wireless sensor nodes (in the foreground) send status messages of the axial piston pump (left) to a tablet.

Picture © Fraunhofer IDMT

"So far, these systems have not had permanently installed acoustic condition monitoring", reports Danilo Hollosi, Head of "Acoustic Event Recognition" of the Oldenburg Project Group for Hearing, Speech and Audio Technology at the Fraunhofer Institute for Digital Media Technology IDMT. "Cognitive systems can be very powerful in this regard. We have illustrated this with our new demonstrator."

Recognize early when it is no longer running smoothly

Together with partners, the scientists have mounted on axial piston pumps batteryoperated sensors that are able to record the noise of the pump via the air, to process it, to compare it with reference audio data and to send the information wirelessly to a digital evaluation unit.

Not only can conclusions about possible undesirable developments be identified at an early stage; statements about the nature of the problems can also be made – for example, if there are problems concerning bearing clearance or hydraulics. This provides the opportunity to intervene before major damage to powertrains or hydraulics occurs.

Use of machine learning methods

"We have trained the cognitive system with machine learning based on previously acquired pump audio signals", Hollosi says. A central infrastructure for data processing is not necessary. This saves costs: while servers can consume amounts in the five-digit range, the price per sensor remains in the double-digits. Another advantage: signal processing on site will require less data for training. "Customers benefit from a datasecure technology platform that is suitable for a wide variety of audio scenarios andthat can be easily retrofitted and scaled to any size.

The networking of sensors via the Internet for remote maintenance is also possible", Hollosi adds, summarizing the advantages. In this process, the Fraunhofer IDMT incorporates the expertise of its project group Hearing, Speech and Audio Technology in Oldenburg. "Our colleagues are experts in technologically recreating the capabilities of the human ear. They teach the systems to adhere to given parameters when evaluating audio data, to take into account environmental noise patterns and to exclude out background noise", says Hollosi.

Ready for the market: Technology Readiness Level 8

The technology is funded by the BMBF (German Federal Ministry of Education and Research) in the ACME 4.0 project. In the meantime, the partners have reached the 3rd project year and Technology Readiness Level 8. "Our prototype works," says Hollosi. In 2018, it will be field-tested. At the same time, the scientists are working with Infineon on predictive maintenance for chip production. The demonstrator will be shown by the Fraunhofer IDMT at the Hanover Trade Fair: A loudspeaker will play the operating noise of the axial piston pump. Wireless sensor nodes can be configured via a tablet. The feedback on the detected acoustic event is then displayed on the tablet.

Weitere Informationen:

https://www.idmt.fraunhofer.de/hsa

Christian Colmer | Fraunhofer-Institut für Digitale Medientechnologie IDMT

More articles from Trade Fair News:

nachricht AchemAsia 2019 will take place in Shanghai
15.06.2018 | DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V.

nachricht Insects supply chitin as a raw material for the textile industry
05.06.2018 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>