Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fusible and printable elastomer sensors for e-textiles

13.05.2019

Integrating sensoric functions into textiles or elastomers is way more difficult than equipping machines because it requires movable or extensible sensors. The Center Smart Materials CeSMa of the Fraunhofer ISC with its experience in the field of adaptive elastomers has developed highly elastic sensors and actuators based on silicone. They provide a wide range of sensoric and actoric functions for smart electronic textiles (e-textiles) with a broad application potential in medical technology, in sports, in furniture, vehicles or in transport safety. CeSMa will be presenting its developments from May 14-17 at TechTextil 2019 in Frankfurt.

By adding electrically conductive components, the silicone can be produced as a stretchable conductive foil, usable e.g. as flexible heating element. If alternating layers of conductive and insulating silicone are laminated together, stretchable capacitors are created that can be used to measure strain and pressure.


Sensor patterns and conducting paths printed on polyester textile.

© K. Selsam for Fraunhofer ISC


Sensor structures with fine and coarse pored surfaces can be manufactured as fusable foils

© K. Selsam for Fraunhofer ISC

Depending on the application, the design and softness of the sensors can be adjusted. This allows tailor-made sensitivity and characteristic of the sensors according to the requirements of the customers.

The silicone used is skin-friendly, washable, robust and very flexible. Sensors made of this silicone withstand even extreme strains and very frequent use without losing their essential qualities.

The sensors convert mechanical strain into an electrical signal and are therefore also suitable for measuring signals of the human body, e.g. breathing, movement or muscle contraction.

In a current project CeSMa has further developed its elastomer sensors and their processing for integration into textiles. The stretchable sensors and actuators can now be applied to textiles by printing techniques or ironing.

The elastomer sensors can be applied permanently to polyester and cotton – the most commonly used textiles in the artificial and natural fiber sector – with a conventional iron in a short time (about 1 minute) even at low temperatures of 80 °C. Since the method allows an individual placement of sensor structures, it is especially intended for smaller quantities.

The desired structures can be produced separately as ironing films, so that in theory any sensor pattern and various functions can be combined. Also, different surface structures can be generated, ranging from "super smooth" to "highly structured". The sensors can be ironed on very different textiles and are not only suitable for original equipment, but also for the retrofitting of textiles – even in private household.

With direct textile printing processes, sensor structures can be imprinted on the desired material in the shortest possible time. The process can be integrated very well into the further processing of the textiles. Very large quantities up to mass production are possible.

The printing process is technically more complex compared to ironing, but due to the higher number of produced pieces it is more cost-effective and therefore particularly interesting for larger manufacturers of textile goods.

Heating surfaces and pressure or strain sensors can be ironed or printed as needed. They can be connected with commercially available cables or with printed elastic conductive paths. This results in textile-integrated sensor and actuator systems that can be used to generate and/or control functions (heat, current pulses, flares, data processing).

Originalpublikation:

https://www.isc.fraunhofer.de/en/press-and-media/press-releases/fusible-and-prin...

Weitere Informationen:

http://www.cesma.de/en

Marie-Luise Righi | Fraunhofer-Institut für Silicatforschung ISC

More articles from Trade Fair News:

nachricht Modular OLED light strips
17.09.2019 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Deburring EXPO: Finishing sheet edges and functional surfaces with the laser
12.09.2019 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

 
Latest News

Quality control in immune communication: Chaperones detect immature signaling molecules in the immune system

20.09.2019 | Life Sciences

Moderately Common Plants Show Highest Relative Losses

20.09.2019 | Life Sciences

The Fluid Fingerprint of Hurricanes

20.09.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>