Fraunhofer ISE Presents Hydrogen Technologies at Hannover Trade Fair

The electric bicycle rack with fuel cell only weighs 3.3 kg including hydrogen tank. It can be mounted on any bike. Fraunhofer ISE

LiteFCBike: Lightweight Fuel Cell System replaces Battery

The market for e-bikes and pedelecs as sustainable alternatives to cars has steadily increased over the past years. In the LiteFCBike project https://www.ise.fraunhofer.de/en/research-projects/litefcbike.html, Fraunhofer ISE develops a compact fuel cell system that replaces the secondary battery.

The technology is based on the power train Conodrive, a lightweight, replaceable power train that powers the rear wheel with a special drive roller. The project objective was to develop a light and practical system together with the developer of Conodrive, José Fernandez.

This was achieved with polymer electrolyte membrane fuel cells, or PEMFC, a fuel cell type that is typically used in automobiles. To reduce weight and volume, two fuel cell stacks with open cathodes were used, thus making a liquid cooling system unnecessary.

In order to fluidically connect all components, the researchers developed a compact fluidic module in which all components are connected. As a result, no pipes and connectors are needed. Metal hydride cartridges are used as storage. They are easily available and can be refilled by the user with a suitable small electrolyzer.

By using a larger hydrogen storage, one could realize longer ranges. In order to achieve significantly greater ranges and maintain short refueling times, it would be possible to use a pressurized storage.

In nominal operation, the fuel cells produce circa 70 Watt and charge the buffer storage. In the supportive phase, 250 watts are available, which is the usual amount for a pedelec. The total volume of the complete system, including tank and controls, is 348 x 153 x 47 mm³. The net energy content of one tank filling is about 270 Wh.

Power-to-Hydrogen: hydrogen as a flexible energy carrier

Hydrogen is a key technology for the transformation of our energy system. As seasonal storage of wind and solar electricity in the form of chemical energy, hydrogen can be used in the heat, transport, industry and mobility sectors. Fraunhofer ISE demonstrates two of the manifold possibilities for using hydrogen in the energy system in the practice: an on-site hydrogen feed-in plant and an on-site solar hydrogen refueling station.

With a PEM electrolyzer, electricity is used to split water and produce hydrogen, which is then stored in pressurized tanks or discharged directly into the respective sectors. At the solar hydrogen refueling station, cars and busses can be filled with renewable fuel. The hydrogen feed-in plant supplies the gas network with renewable gas.

Fraunhofer ISE uses the systems as research platforms to test sector coupling approaches, new components for hydrogen and natural gas applications and new operation strategies for electrolysis, refueling stations and feed-in systems. Clients can test their own product developments at Fraunhofer ISE’s on-site hydrogen systems as a first-time field implementation.

With its pilot series, test facilities and technology evaluation centers, Fraunhofer ISE offers technology developments from functional models up to the transfer to production. The service offers comprise of studies for new concepts, development of processes and process chains, customization of systems and components, characterization, modeling, simulation and technology evaluations, including techno-economic and environmental assessments. The client profits from the services in the areas of technology development, material development, process development, Membrane electrode assembly (MEA) characterization and technology evaluation.

Talks Presented by Fraunhofer ISE Researchers:

Integrated Energy Forum (Hall 27, Booth L55)
Monday, April 1st

16:15 Hans-Martin Henning, Director Fraunhofer ISE: “Comprehensive system integration: technical, economic, social – the Kopernikus project Enavi”

Technical Forum (Hall 27)
Tuesday, April 2

14:00 Max Julius Hadrich: “Pathways for Power-to-Liquid fuels and Chemicals”

Wednesday, April 3

13:00 Ulf Groos: “Characterization of Fuel Cell MEAs”

Thursday, April 4

11:20 Stefan Keller: “Advanced Characterization of Fuel Cell Stacks”

16:00 Thomas Jungmann: “Testing of Fuel Cell BoP Components in H2 Atmosphere”

https://www.ise.fraunhofer.de/en/press-media/press-releases/2019/fraunhofer-ise-…

Media Contact

Karin Schneider Fraunhofer-Institut für Solare Energiesysteme ISE

All latest news from the category: Trade Fair News

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors