Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fraunhofer IISB releases foxBMS, a universal, royalty free and fully open battery management system

21.04.2016

Fraunhofer IISB is proud to announce the launch of its first generation, free, open, and flexible battery management system, namely foxBMS. At the conference “Batterietagung 2016” (battery-power.eu) foxBMS will be presented publicly for the first time. Visit us at Batterietagung 2016 on April 25-27 in Muenster, Germany, at the Fraunhofer Battery Alliance stand (booth 18). foxBMS will also be on show at the Fraunhofer IISB stand at the PCIM Europe 2016 from May 10-12 in Nuremberg, Germany. Currently, a total of 15 renowned industrial and research organizations from 7 countries worldwide have been selected from a long list of volunteers to participate in an intensive beta testing program.

The public release of foxBMS, including all the hardware schematics, the software source code and documentation, is scheduled for the end of 2016. The system will then be available for download on http://www.foxbms.org.


Central control unit of foxBMS, the free, open, and flexible battery management system from Fraunhofer IISB in Erlangen.

Fraunhofer IISB

Experience gained from international research and development projects over the last 15 years in the field of electrochemical energy storage systems at Fraunhofer IISB has been implemented in the electronic hardware and software of the foxBMS platform.

The electronics is designed to manage high-performance prototypes of advanced and innovative lithium-ion battery systems of any size (i.e., from a few cells up to several hundreds of kWh and kW), especially for systems requiring the highest availability and safety levels.

The free and open source version of foxBMS is not intended for immediate use in commercial products as they have to meet specific standards and require application-dependent certifications. In fact, foxBMS is a safe research, development, and test platform providing all functions for managing the complexity of state-of-the-art electrochemical energy storage systems.

Specific adaptions of foxBMS can be ordered directly from Fraunhofer IISB or can be jointly developed with us for you, for example for automotive, aviation, space, submarine, industrial, and renewable energy storage applications.

Fraunhofer IISB delivers the first generation of its open source battery management system (BMS) research and development platform, foxBMS. The foxBMS platform is completely free and open, designed for maximum flexibility, and comprehensively documented.

It includes all necessary hardware and software for potentially any kind of mobile and stationary application that uses modern rechargeable electrochemical energy storage systems (e.g., lithium-ion batteries, redox-flow batteries, supercapacitors). The foxBMS hardware schematics and the layout of all electronic boards are available for download.

The circuit design is based on commonly available components and devices, that do not require NDAs or confidentiality agreements. The foxBMS software toolchain uses only free of charge third-party software. The entire BMS source code is provided online with its own development environment and configuration files, enabling immediate use on Windows, Mac, and Linux operating systems.

With foxBMS you get a free and open BMS platform that can be used for developing and testing your products. The foxBMS hardware and documentation are licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. The foxBMS software is licensed under the BSD 3-Clause license. This means, foxBMS parts can be used unrestrictedly including commercial use.

The foxBMS platform especially addresses R&D and test engineers requiring a smart, powerful, and well documented BMS platform. Engineering companies as well as small enterprises requiring a flexible and future proof BMS may profit from a maintained and supported BMS like foxBMS. Large enterprises asking for a reliable and safe BMS can use foxBMS for testing their prototypes. Research organizations requiring a simple and universal BMS development platform or students looking for a free and open BMS software development toolchain are welcome to include foxBMS in their projects.

Contact

Dr. Vincent Lorentz
Fraunhofer IISB
Schottkystraße 10, 91058 Erlangen, Germany
Tel.: +49 9131 761 346
info@foxbms.org
www.foxbms.org

Fraunhofer IISB

Founded in 1985, the Fraunhofer Institute for Integrated Systems and Device Technology IISB conducts applied research and development in the fields of power electronics, mecha-tronics, microelectronics and nanoelectronics. The work of the institute in power electronic systems for energy efficiency, hybrid and electrical automobiles as well as in technology, device and material development for nanoelectronics enjoys international attention and recognition.

In the business area of power electronics, the primary focus is on topics such as innovative circuit and system solutions for highly efficient and compact power converters, mechatronic 3D integration, multifunctional integration and use of new materials and semiconductor de-vices. Application fields include e.g. electrical energy transmission, drive technology, switch-ing power supplies and voltage transducers, components for vehicle technology and vehicle models, construction and connection technology for passive and active power modules as well as lifetime and reliability tests. Fraunhofer IISB additionally has extensive experience in the area of error analysis. This applies to all levels of electronic circuits, from chips to chip contacting, housings and circuit carriers or insulation substrates, up to passive devices.

Around 230 employees work in contract research for industry and public institutions. In addi-tion to its headquarters in Erlangen, the IISB also has two further locations in Nuremberg and Freiberg. The IISB closely cooperates with the Chair of Electron Devices at the Friedrich-Alexander-University Erlangen-Nuremberg.

Weitere Informationen:

http://www.foxbms.org Homepage foxBMS
http://www.iisb.fraunhofer.de Homepage Fraunhofer IISB
http://www.iisb.fraunhofer.de Homepage Fraunhofer IISB, Press Releases

Presseteam | Fraunhofer IISB

More articles from Trade Fair News:

nachricht Medica 2019: Arteriosclerosis - new technologies help to find proper catheters and location of vasoconstriction
11.11.2019 | Technische Universität Kaiserslautern

nachricht Laser versus weeds: LZH shows Farming 4.0 at the Agritechnica
08.11.2019 | Laser Zentrum Hannover e.V.

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

Theoretical tubulanes inspire ultrahard polymers

14.11.2019 | Materials Sciences

Can 'smart toilets' be the next health data wellspring?

14.11.2019 | Health and Medicine

New spin directions in pyrite an encouraging sign for future spintronics

14.11.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>