Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fraunhofer HHI presents interaction components for contactless human-machine operation

20.04.2017

The Fraunhofer Heinrich Hertz Institute HHI is presenting its gesture control expertise at this year’s Hannover Messe trade fair. At the Fraunhofer booth C22 in hall 2, the institute is presenting the EASY COHMO project (ergonomics assistance systems for contactless human-machine operation) aimed at overcoming the problems of human-robot interaction and cooperation. Developing interaction components for contactless, gesture-based human-machine operation is the project objective.

Robot assistance systems and intelligent automation solutions can make a crucial future contribution to offering relief for workers by largely taking over physically demanding, ergonomically difficult and monotonous tasks.


Fraunhofer HHI presents interaction components for contactless human-machine operation at the Hannover Messe trade fair

© istockphoto.com/kynny, edit: Fraunhofer HHI

Human-robot cooperation is expected to provide great social benefits especially in the context of demographic change. Society is confronted with an ageing population and an increasing shortage of younger qualified specialists.

Highly specialised and effective robot systems are being developed today for deployment in various complex work environments, for example in production, health or mobility.

However, the increasingly diverse functionality, specialisation and capabilities of these systems pose new challenges for users in interacting with these complex machines.

That is why new operating concepts for human-machine interaction and human-machine cooperation that are adapted to user requirements and integrated into the work context have to be researched and developed.

The goals of the EASY COHMO project are to improve interaction and cooperation with robots and to develop solutions for novel, easy to operate yet safe assistance systems in production and health.

The Fraunhofer HHI is for example developing a 3D near-field and middle-field acquisition system and corresponding information processing for capturing, tracking and interpretation of body movements and hand gestures.

This establishes an important foundation for the integration of robots into working processes that will become increasingly necessary in the future, especially in Germany.

Weitere Informationen:

https://www.hhi.fraunhofer.de/en/press-media/press-releases.html

Anne Rommel | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

More articles from Trade Fair News:

nachricht AchemAsia 2019 will take place in Shanghai
15.06.2018 | DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V.

nachricht Insects supply chitin as a raw material for the textile industry
05.06.2018 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>