Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fraunhofer FHR presents innovative contributions to radar applications in the automotive sector at the IAA

09.09.2019

The Fraunhofer Institute for High-Frequency Physics and Radar Technology FHR is participating in the International Motor Show IAA in Frankfurt am Main for the first time this year. The institute will be presenting its comprehensive radar expertise in the field of automobility ranging from antenna design, cognitive radar and material characterization up to efficient test procedures using synthetic data at the joint Fraunhofer-Gesellschaft stand from the 10th to 13th of September 2019.

Radar sensors are important components for modern automobility. Not least due to the rapid developments being made in the field of autonomous driving, the importance and requirements of these sensors are constantly increasing.


Cognitive Automotive Radar

© Fraunhofer FHR

In hall 4.1, stand C12, the scientists of the Fraunhofer FHR will show what important contributions they can make in connection with future developments in this field.

A large number of systems whose function is made possible only in connection with a suitable antenna are being increasingly installed in modern cars and trucks. These sys-tems are used for communication, data transfer, navigation, remote sensing and final-ly radio and television reception.

For many years, the scientists at Fraunhofer FHR have been assisting major German automotive suppliers with the development and integration of antennas for the ever new generations of automotive radar with the common frequency bands at 24 GHz and between 76 and 81 GHz.

Antennas for keyless entry, toll collection and satellite navigation are further examples of industrial research and development projects.

Fraunhofer FHR will also showcase the possibilities of Cognitive Automotive Radar. Radars are becoming smaller and cheaper, and their software-driven sensors enable completely new sensing strategies and signal processing algorithms that are adaptive and learn through experience.

This allows them to revolutionize modern driver assistance systems and pave the way for autonomous driving with other sensors.

Material characterization for automotive radar is usually done with the goal of optimizing the transmission of high-frequency radiation through various plastic components. This is key for optimum system performance.

The rising popularity of radar in vehicles poses a challenge to the manufacturers of raw materials and plastic parts as they must find materials and parts according to their electromagnetic properties and characteristics.

These have to be implemented so that the radar and design both function optimally. Fraunhofer FHR is supporting this, thanks to the extensive know-how in terms of experimental-metrological material characterization in combination with the electromagnetic-physical understanding of wave propagation in dielectric materials.

Lawmakers in particular are placing high demands on safety and reliability of radar sensors for automobility and for autonomous driving. Currently, sensors are being certified in a resource-intense manner with millions of kilometers driven.

The experts at Fraunhofer FHR are working on software solutions to reduce this effort. As such, the simulation tool GOPOSim offers a solution for the EM simulation of dynamic traffic scenarios. With GOPOSim, a software solution for the fast electromagnetic simulation of time-dynamic processes is being developed at Fraunhofer FHR.

The functionalities of an automotive radar sensor, for example, can be tested without time-consuming test drives based on synthesized radar data.

The ATRIUM project is all about the reliable qualification of automotive radar sensors. At Fraunhofer FHR, ATRIUM is developing a radar target simulator for the E-band that will enable comprehensive tests of the functionalities of next-generation automotive radar sensors. In contrast to conventional radar target simulators, ATRIUM will be able to test a radar with complex traffic scenarios in a realistic manner.

Jens Fiege | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR
Further information:
http://www.fhr.fraunhofer.de/

More articles from Trade Fair News:

nachricht Medica 2019: Arteriosclerosis - new technologies help to find proper catheters and location of vasoconstriction
11.11.2019 | Technische Universität Kaiserslautern

nachricht Laser versus weeds: LZH shows Farming 4.0 at the Agritechnica
08.11.2019 | Laser Zentrum Hannover e.V.

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

New antenna tech to equip ceramic coatings with heat radiation control

22.11.2019 | Materials Sciences

Pollinator friendliness can extend beyond early spring

22.11.2019 | Life Sciences

Wound healing in mucous tissues could ward off AIDS

22.11.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>