Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fraunhofer at the Compounding World Expo 2018: Plastic Recycling and Intelligent Monitoring of Industrial Processes 4.0

30.05.2018

Upcycling of PET bottles and the recycling of flame-retardant plastics are worthwhile both for economic reasons and for protecting the environment. Fraunhofer LBF will present current research results at the Compounding World Expo 2018 in Essen, from June 27 to June 28, at booth 707. Another topics will be new procedures in process technology, under the keyword Industry 4.0. A monitoring system that is based on intelligent sensor nodes, for example for a twin-screw extruder, ensures that networked, autonomous work processes run reliably. With another patented procedure, the corrosiveness of plastic melts can be determined quickly, which also helps to prevent downtime in the future.

Plastics are conquering the earth - unfortunately not always to the earth’s advantage, as indicated by the increasing reports on plastic waste. Two studies by the Fraunhofer Institute for Structural Durability and System Reliability LBF, on the other hand, demonstrate that upcycling of PET bottles and the recycling of flame-retardant plastics are worthwhile both for economic reasons and for protecting the environment.


Scientists are researching how the upcycling of PET bottles can be economically viable and also protect the environment.

Foto: MEV-Verlag

Further details on these studies will be presented at the Compounding World Expo 2018 in Essen, from June 27 to June 28, at booth 707. Another main focus will be on new procedures in process technology, under the keyword Industry 4.0. A monitoring system that is based on intelligent sensor nodes, for example for a twin-screw extruder, ensures that networked work processes run reliably. With another patented procedure, the corrosiveness of plastic melts can be determined quickly, which also helps to prevent downtime in the future.

At the Compounding World Expo 2018, the Fraunhofer LBF will present information on an innovative procedure for the high-quality cycle utilization of polyethylene terephthalate (PET), which is being developed in the newly launched research project "UpcyclePET."

... more about:
»LBF »Monitoring »PET »Plastics »Recycling »glass »plastic

PET waste from used beverage bottles is thus recycled as industrial plastic and thereby reduces the consumption of new plastic based on fossil resources. The project team consists of the company EASICOMP GmbH, the Fraunhofer Institute for Structural Durability and System Reliability LBF and the Öko-Institut. In order to develop an integrated manufacturing process for the production of glass fiber reinforced PET components, a pultrusion process is used, with which the PET plastic is reinforced with long glass fibers and thereby technically upgraded.

The special feature of this approach is to combine two process steps, which are separated in today's practice, and to tailor the properties of the recycled PET used by adding and modifying it.

Recycling Halogen-Free Flame Retardant Plastics

As a consequence of plastic production, disposal of these products at their end-of-life generates environmental challenges. Among the various disposal possibilities of plastics waste management, mechanical recycling is the favored option for ecological, economical and in particular energetic reasons. Polymeric waste materials are considered as valuable resources for manufacturing new products through recycling processes; preferably replacing virgin plastics provided similar properties can be achieved.

Due to the increased recycling quota there is a need to consider materials which are believed to be more demanding for mechanical recycling like flame-retardant applications of plastic. As part of a research project, the Fraunhofer LBF is investigating the mechanical recycling of various halogen-free flame retardants and polymer combinations.

The research is focused on the identification of aging behaviour and damage mechanisms after multiple extrusion cycles and accelerated thermo-oxidative aging, which can have a significant influence on the mechanical properties and fire behaviour. An understanding of the ongoing processes also allows tailor-made additivation with suitable additives. In this way, an improvement in the quality of recycled materials can be achieved. The results so far are promising. After multiple extrusion of PA6 and PA6 / GF (glass fiber) as well as PA66 / GF the flame retardancy of the formulations was maintained

Emissions from Plastic Products

The subject of emissions and odor from plastic products has been a major issue for many years, especially for plastics for indoor purposes, such as car interior. For many applications of plastic this question is considered having been solved. However, the industrial trend is going towards even lower thresholds. In addition, due to the increasing use of recycled material, the plastics industry is facing new challenges:

Recycled material exhibits higher emission potential. Furthermore the variation from batch to batch is quite broad, which always requires to adjust the process. Based on the many years of experience in this subject area, the Fraunhofer LBF is currently developing a process for on-line tracking of emissions, in which the emission behavior will be analyzed and documented during the compounding process. . Based on the measurement data, the recipe can be adjusted by means of different additives.

Optimizing Processes in Plastics Industry by Monitoring with Intelligent Sensors - Industrial Processes 4.0

Already today modern production systems can communicate with their surroundings and manage themselves. Industry 4.0 is on the rise and cyber-physical systems (CPS) are the essential components of this development. Intelligent sensors for monitoring and controlling production processes ensure that connected work processes can run reliably. Scientists at the Fraunhofer LBF have used these technologies as part of the "ImProcess4.0" project and developed an intelligent sensor node-based monitoring and optimization system for production lines using twin-screw extruders. This opens chances for predicted maintenance in production processes and thus reduces stand still times.

Determining the Corrosiveness of Plastic Melts Quickly

Abrasion and corrosion are serious problems in plastics processing, especially for some flame-retardant plastic compounds or the re-use of recycled material. Severe damage on screws, extruder housings, non-return valves or molds has been observed in this context.

In order to develop a high-performance compound, many different formulations have to be prepared through melt compounding and to be tested regarding the target properties and also the corrosiveness. Similarly, the problem arises when selecting the material for an aggregate to process a corrosive formulation. At Fraunhofer LBF an electrochemical screening method was devised primarily for development of polymer compounds and additives. The patented method makes it possible to assess rapidly the corrosiveness of a formulation even with low amount to be tested (approx. 1 kg).

It allows quick conclusions on the corrosiveness of a formulation. New raw materials or additives, that are initially available only in small quantities, can also be tested.

Weitere Informationen:

http://www.lbf.fraunhofer.de/de/veranstaltungen/messe-compounding-world-expo-201...

Anke Zeidler-Finsel | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

Further reports about: LBF Monitoring PET Plastics Recycling glass plastic

More articles from Trade Fair News:

nachricht AchemAsia 2019 will take place in Shanghai
15.06.2018 | DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V.

nachricht Insects supply chitin as a raw material for the textile industry
05.06.2018 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

Protein interaction helps Yersinia cause disease

21.08.2018 | Life Sciences

Biosensor allows real-time oxygen monitoring for 'organs-on-a-chip'

21.08.2018 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>