Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Forwards, backwards, faster, slower... Smart conveyor rollers help optimize parcel logistics

26.03.2018

Engineers from Saarbrücken have developed a system of self-monitoring conveyor rollers that aim to help sorting offices and parcel services solve crucial logistics problems. Drive systems specialist Professor Matthias Nienhaus from Saarland University and his team of engineers have found a way of turning the motor inside every drive roller into a sensor. When the conveyor is running, the drive motors continuously generate data. Using this data – and nothing more – Nienhaus’ technology is able to precisely control each of the conveyor rollers so that it can respond to changing operating conditions.

The new technology can be used to provide a cost-effective means of speeding up parcel sorting operations and can deliver greater flexibility wherever conveyor systems are in use. The research engineers from Saarland University are in Hannover to look for industrial partners interested in developing the new technology into marketable products.


The team will be exhibiting a conveyor demonstrator made from these smart rollers at Hannover Messe.

Credit: Oliver Dietze


The drive systems specialist Matthias Nienhaus from Saarland University is collaborating with partners to develop smart conveyor rollers that communicate with one another.

Credit: Oliver Dietze

The team will be exhibiting a conveyor demonstrator made from these smart rollers at Hannover Messe from the 23rd to the 27th of April at the Saarland Research and Innovation Stand (Hall 2, Stand B46).

Online commerce is booming. Ever greater numbers of packages and parcels need to be shipped ever more quickly to their destinations. This poses huge challenges for parcel services. But speed is not the only thing that has to be optimized, the mountains of packages coming into a parcel sorting hub have to be transported, sorted and distributed in the smallest possible space without interruption and without error. In a parcel sorting centre there is neither time nor room for parcel pile-ups.

And today’s parcel sorting hubs have to deal with items whose size and weight can differ enormously, one second it’s an exercise bike, the next second it’s a book. Conventional flat-bed conveyor belt lines contain huge numbers of tightly packed rollers that are powered by a central drive system. The rollers all rotate in the same direction and at the same speed. ‘If there’s a large gap between two parcels, the gap stays constant as the parcels move down the line.

There’s no way to change or to define the distance between the parcels,’ says Professor Matthias Nienhaus of Saarland University. Closing the gap by getting the rear parcel to catch up with the one in front has not been possible up until now. As a result, the time and space for conveying the parcels is not being used in an optimal way. And if one of the rollers fails, the whole belt can come to a standstill.

Nienhaus and his team of engineers have found a means of making roller conveyors much more flexible and responsive. In their roller conveyor system, each roller runs independently, sometimes running forwards, sometimes backwards, sometimes rotating a little faster, sometimes a little slower – adjusting its operational state as needed at that specific moment. Unlike the conventional conveyor belts in use at present, each of the rollers in the Saarbrücken system knows just what it is supposed to be doing.

‘The rollers in our system can detect gaps between the parcels being conveyed and, if they sense a gap, they can rotate faster to close the gap. Or, if parcels are beginning to pile up, the rollers will start to rotate more slowly. If a roller fails, the other rollers will register this fact and can compensate accordingly – so we have a system in which the rollers are effectively communicating with one another,’ explains Nienhaus.

As the technology does not need any additional sensors, the cost of the new system is extremely attractive. The trick is to focus on the small electric motors inside the rollers. ‘We record operational data at certain points within the drives. We then use this data to calculate the status of the rotor and to draw conclusions about how it might need to respond.

One of the measurements involves determining how the strength of the motor’s electromagnetic field is distributed. Inside the electric motor, permanent magnets rotate around coils. Allowing electric current to flow through these coils generates an electromagnetic field. By studying the measurement data, the researchers can see how this field changes as the motor rotates, giving them very precise information about the state of the drive.

‘By evaluating this kind of data, we are in a position to control the motors in the rollers very efficiently’, says Nienhaus. The drive systems specialists have developed novel procedures that make it easier to analyse the data and to computationally filter out unwanted artefacts. A patent application has been filed. ‘In future, we’ll be using the data for an even more advanced analysis of the drive’s operational status,’ explains Professor Nienhaus. By evaluating angular momentum data, it is possible to determine how heavy a parcel is or whether or not a parcel is actually above a particular roller.

‘Our methods allow us to observe even the smallest changes in the motors,’ says Nienhaus. If one of the rollers is no longer rotating because the bearing has worn or because of a short circuit, the magnetic field generated by the motor will change and this will be immediately registered by the system. The system knows which roller is affected and why. ‘Because each roller has access to a network operating system, thousands of individual rollers can be linked together to form an integrated smart roller system. These rollers are essentially able to communicate with each other and can therefore respond flexibly whenever an unexpected condition arises,’ explains drive specialist Nienhaus.

The Saarbrücken engineers will be bringing a small conveyor system to Hannover Messe in order to showcase their smart roller technology. The research team is looking for commercial and industrial partners with whom they can develop their system for concrete practical applications.

Background:
Matthias Nienhaus and his team at Saarland University conduct research into intelligent drive systems in collaboration with researchers from Saarland University of Applied Sciences (htw saar) and industrial partners. Industrial project partners include Wellgo Gerätetechnik GmbH (Nohfelden), HighTec EDV-Systeme GmbH (Saarbrücken) and Micronas GmbH (Freiburg). The Federal Ministry of Education and Research (BMBF) has funded the project “Rolle” to the tune of €4.2 million, of which €500,000 was allocated to Saarland University.

Contact:
Prof. Dr. Matthias Nienhaus (Laboratory of Actuation Technology, Saarland University, Saarbrücken, Germany) Tel.: +49 681 302-71681; Email: nienhaus@lat.uni-saarland.de
Stephan Kleen, Tel.: +49 681 302-71687; Email: kleen@lat.uni-saarland.de

Press photographs are available at http://www.uni-saarland.de/pressefotos and can be used free of charge. Please read and comply with the conditions of use.

German Version of the Press Release:
https://www.uni-saarland.de/nc/aktuelles/artikel/nr/18806.html

The Saarland Research and Innovation Stand is organized by Saarland University's Contact Centre for Technology Transfer (KWT). KWT is the central point of contact for companies interested in exploring opportunities for cooperation and collaboration with researchers at Saarland University. http://www.uni-saarland.de/kwt

Claudia Ehrlich | Universität des Saarlandes
Further information:
http://www.uni-saarland.de

More articles from Trade Fair News:

nachricht AchemAsia 2019 will take place in Shanghai
15.06.2018 | DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V.

nachricht Insects supply chitin as a raw material for the textile industry
05.06.2018 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>