Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Develop data glasses faster


The Fraunhofer FEP, a provider of research and development services in the area of organic electronics, is expanding its array of development tools for data glasses. See them during the embedded world 2018 Exhibition and Conference in Hall 4 at the joint Fraunhofer Booth No. 460 in Nuremberg, Germany, February 27 to March 1, 2018.

Augmented Reality (AR) and Virtual Reality (VR) are technologies that are increasingly being integrated in both our private and working lives. The number of data glasses being marketed is growing rapidly because the required technologies have now reached a level that makes compact, capable, and comfortable data glasses feasible.

Ultra-low power OLED microdisplay

© Fraunhofer FEP, picture in printable resolution:

Large-area OLED microdisplay

© Fraunhofer FEP, picture in printable resolution:

Scientists at Fraunhofer FEP have specialized in the development of custom microdisplays for AR and VR data glasses. “We utilize OLED-on-silicon technology for our microdisplays. OLEDs are self-illuminating, requiring no additional illumination in comparison to other types of displays, and therefore facilitate simplified optics and considerably higher contrast ratios”, explains Bernd Richter, deputy head of the Microdisplays and Sensors Division at Fraunhofer FEP. “Additional functionality can even be directly integrated into the display, such as a microminiature camera for controlling the information displayed in glasses using eye tracking.”

The way that data glasses are designed and constructed is as varied as their application areas – such as assisted equipment maintenance, in health examinations, or as a simple display of information for joggers and cyclists.

To make the developer’s job of incorporating OLED-on-silicon technology the most suitable way as easy as possible, the scientists offer evaluation kits for use as development tools.

Controlling content with eye tracking

One specialized configuration is a bidirectional microdisplay that combines a high-resolution SVGA OLED microdisplay and an embedded SVGA image sensor in a single region of an active device. With these evaluation kits glasses can be developed that make it possible to use the eyes to control what content is displayed, thereby freeing up the hands for assembly work, for example. Moreover, these bidirectional displays can be used as the basis for developing and evaluating optical sensors such as optical finger print sensors, for example.

Ultra-low power OLED microdisplays

Ultra-low-power displays are especially suitable for displaying simple information. Though they have limited resolution, they nevertheless can reduce the current consumption to a small fraction through an innovative approach in the design of the display backplane as well as advanced system design. This facilitates considerably longer operating times for batteries and also delivers more compact, lighter systems. The approach is particularly advantageous for data glasses used to display navigation or fitness data by athletes.

Large-area OLED microdisplays

An evaluation kit with an especially large-scale OLED microdisplay that is primarily of interest for VR applications will be presented for the first time at embedded world 2018. This OLED microdisplay was developed in the LOMID project (Large-area costefficient OLED microdisplays and their application, This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 644101.

The scientists are also ready of course to develop client-specific OLED microdisplays that are adapted to perfectly fit the purpose of the display. OLED-on-silicon technology is likewise being employed for sensors: such as for any sensing job that has to rely on something being initially illuminated, then detecting and evaluating the reflected light in real time – such as in optical sensors for biological sensing applications and finger print sensors.

Press contact:

Mrs. Annett Arnold

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP
Phone +49 351 2586 333 |
Winterbergstraße 28 | 01277 Dresden | Germany |

Weitere Informationen:

Franziska Lehmann | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

More articles from Trade Fair News:

nachricht AchemAsia 2019 will take place in Shanghai
15.06.2018 | DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V.

nachricht Insects supply chitin as a raw material for the textile industry
05.06.2018 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

Latest News

Pollen taxi for bacteria

18.07.2018 | Life Sciences

Biological signalling processes in intelligent materials

18.07.2018 | Life Sciences

Study suggests buried Internet infrastructure at risk as sea levels rise

18.07.2018 | Information Technology

Science & Research
Overview of more VideoLinks >>>