Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Come Together: Teamwork Achieves Optimum Composite Design

14.02.2018

At the JEC World Composite Show in Paris this March, the Fraunhofer Institute for Structural Durability and System Reliability LBF in Darmstadt and the Fraunhofer Institute for Laser Technology ILT in Aachen will be demonstrating how well-coordinated collaboration makes it possible to optimize a hybrid automotive component for series production: Together with their industrial partners, these Fraunhofer institutes have developed a multi-material roof bow as an exhibition piece, which the researchers are looking to present for the first time at a joint booth hosted by the Aachen Center for Integrative Lightweight Production AZL, Hall 5/C55.

Within the HyBriLight project sponsored by Germany’s Federal Ministry of Education and Research, a hybrid component has been developed that demonstrates the successful implementation of new innovative laser processes in lightweight production.


Multi-material roof bow: At the JEC World Composite Show in Paris this March, Fraunhofer LBF and ILT will use this exhibition piece to demonstrate how costs and process time can be reduced.

© Fraunhofer ILT, Aachen, Germany

The hybrid component is what is known as a roof bow, based on an original component of a BMW 7 Series vehicle. It consists of a fiber-reinforced plastic brace bonded to two metal connecting plates. These attach the part to the chassis. As an alternative to the glue and rivets used up to now, the Fraunhofer ILT has developed a new laser-based bonding process that joins plastic and metal via positive locking and adhesion.

Ultrafast pulse laser gives the metal surface its special structure

An ultrafast pulse laser first generates sponge-like micro and nano structures on the joining partners’ metal surface. Next, the fiber-reinforced plastic brace is compression molded and joined to the metal plates in the same process step. This requires the connecting plates to be placed in a special variothermal mold.

Then, during the compression molding process, polymer melt fills the metal structures. Once solidified, the plastic and the metal form a strong and durable bond through clawing. Local tape reinforcement increases the component’s rigidity. The component is then trimmed by fiber laser in a multi-pass process.

Fraunhofer LBF has optimized the design of this special hybrid connection. “We used material samples to analyze the static and cyclical loads,” says Dominik Spancken, Experimental Durability Plastics business team leader at Fraunhofer LBF. Those findings are used to estimate the component’s service life, and are validated by experimental tests.”

High tensile shear strength thanks to optimized design

Through the teamwork of these two Fraunhofer Institutes and their industrial partners, it has been possible to create with a validated process a hybrid component with a shear strength of nearly 50 MPa. To be able to produce this part more cost efficently, a thermoplastic glass fiber reinforced PA6 matrix is used instead of the carbonfiber reinforced Duroplast brace. In order to maintain the original part’s rigidity and stability, parts of the roof bow were locally reinforced using unidirectional carbon fiber tape. The cycle time for producing one component is around 75 seconds.

Process time reduced 70 percent

“The result is something to be proud of,” says project coordinator Kira van der Straeten, a scientist in the Plastics Processing Group at Fraunhofer ILT. “This innovation achieves a 70 percent reduction in process times compared to conventional processes, a 45percent reduction in raw material costs and the integration of multiple process steps into one highly automated process.”

Project HyBriLight

The BMBF project HyBriLight is creating photonic tools for lightweight engineering. This is specifically about a “process chain tailored to the material for cost-efficient hybrid lightweight construction using highly productive laser systems” that will herald the transition from manufacture to series production. Project participants: Fraunhofer Institute for Laser Technology ILT, Aachen (project coordination); Fraunhofer Institute for Structural Durability and System Reliability LBF, Darmstadt; Weber Fibertech GmbH, Markdorf; Werkzeugbau Siegfried Hofmann GmbH, Lichtenfels; Scanlab GmbH, Puchheim; Bayerische Motoren Werke Aktiengesellschaft, Munich; Airbus Group Innovations, Munich; Dilas GmbH, Mainz; Held Systems GmbH, Heusenstramm.

Contact

Kira van der Straeten M. Sc.
Microjoining Group
Telephone +49 241 8906-158
Kira.van.der.straeten@ilt.fraunhofer.de

Weitere Informationen:

http://www.ilt.fraunhofer.de/en
https://www.ilt.fraunhofer.de/en/fairs-and-events/fairs/jec_world_2018.html

Petra Nolis M.A. | Fraunhofer-Institut für Lasertechnik ILT

More articles from Trade Fair News:

nachricht Medica 2019: Arteriosclerosis - new technologies help to find proper catheters and location of vasoconstriction
11.11.2019 | Technische Universität Kaiserslautern

nachricht Laser versus weeds: LZH shows Farming 4.0 at the Agritechnica
08.11.2019 | Laser Zentrum Hannover e.V.

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Cohesin - a molecular motor that folds our genome

22.11.2019 | Life Sciences

Magnesium deprivation stops pathogen growth

22.11.2019 | Health and Medicine

Detecting mental and physical stress via smartphone

22.11.2019 | Studies and Analyses

VideoLinks
Science & Research
Overview of more VideoLinks >>>