Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bringing 3D models to life acoustically

06.04.2017

At Hannover Messe, taking place April 24 – 28, Fraunhofer IDMT will be presenting the findings from a research project on making the sounds of electrically powered machines, devices, or components audible during virtual product development already. New developments allow the use of 3D models to analyze, assess and improve the acoustic properties of products, instead of building costly real prototypes.

What do heavy production machinery, such as milling machines or CNC cutting machines, and household appliances, like washing machines or hair dryers, have in common? Not very much, one might suppose imagining the visual characteristics of these different objects only. But if we extend our imagination to hearing, we will find that all these objects produce specific sounds. Sound plays an increasingly important role in the marketing of products.


Bringing virtual products and machines to life acoustically is the goal of Fraunhofer IDMT´s research.

Fraunhofer IDMT

During the buying decision process, customers and consumers increasingly base their subjective assessment of a certain product on its acoustic properties – while some sounds are perceived as pleasant, conveying the impression of robustness and reliability, others are considered as unpleasant, promoting a feeling of untrustworthiness and uncertainty. So what a product sounds like when we are using it really matters.

“Nowadays, in virtual product development, it is possible to simulate and assess all kinds of properties and characteristics of the product to be developed, except for the product’s acoustic properties”, says Dr. Sandra Brix, manager of the research project entitled “AVP3 – Acoustically Advanced Virtualization of Products and Production Processes”.

“Our goal is to auralize virtual product models, which basically means that we want to make 3D models audible”. Building on its broad scientific expertise in the field of spatial sound reproduction using wave field synthesis, Fraunhofer IDMT is currently working on methods and techniques to link the 3D visualization of prototypes with the respective authentic sounds.

This is done by computing the sound signals produced by a machine or device with the help of acoustic models, before the signals are made audible using the technology of SpatialSound Wave, Fraunhofer IDMT’s system for producing and replaying three-dimensional sound.

A special challenge lies in the correct simulation of the acoustics of virtual prototypes taking into account different perspectives from which they are viewed and, consequently, heard. “The sound of a virtual object must be as realistic as possible in order to be able to correctly assess its acoustic properties and behavior from any direction”, says Sandra Brix.

Joining Fraunhofer IDMT in the AVP3 project, which is funded by the German Federal Ministry for Economic Affairs and Energy, are two universities and five enterprises.

If you are interested in 3D visualization and auralization being linked for the first time, please feel free to visit us at the Fraunhofer booth C22, hall 2.

Weitere Informationen:

https://www.idmt.fraunhofer.de/en/institute/projects_products/projects/Current_p... - information about the research project

Julia Hallebach | Fraunhofer-Institut für Digitale Medientechnologie IDMT

More articles from Trade Fair News:

nachricht AchemAsia 2019 will take place in Shanghai
15.06.2018 | DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V.

nachricht Insects supply chitin as a raw material for the textile industry
05.06.2018 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>