Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Automated Laser Material Processing – precise, flexible and time-saving

28.10.2010
At the International Sheet Metal Working Technology Exhibition, EuroBLECH 2010 in Hanover, Germany (from October 26 to 30, 2010), the Fraunhofer Institute for Laser Technology ILT will be presenting tailor-made system solutions for higher component precision and process stability. Customers from all sectors of sheet metal processing industries can find out more about the newest processes and system components of the researchers from Aachen at Stand 11 in Hall C06.

By combining laser cutting and laser welding in a single processing head, the Fraunhofer researchers have created a system that leads to higher flexibility in plant dimensioning, optimizing the processing sequence and reducing the clamping, storage and transport times. To do this, the institute has developed a so-called combi-head, which is produced and marketed by the cooperation partner Laserfact GmbH in Aachen and whose latest functional upgrades will be presented at EuroBLECH 2010.


The combi-head cuts and measures the U-shaped section…
Fraunhofer Institute for Laser Technology ILT, Aachen


and welds on the face plate.
Fraunhofer Institute for Laser Technology ILT, Aachen

Thanks to the Tool Center Point, common to both processes, component precision and process stability during laser cutting and welding have been significantly increased. The signals from the capacitive distance sensor system of the combi-head are used for normal distance control as well as for component measurement so as to precisely predetermine the subsequent weld seam.

Combi-head in Integrated Process Chains

In this way, complex sheet metal component parts can be cut to size, measured, welded and finally cut again, all in an integrated process chain. Dr. Dirk Petring, group manager of Macro Joining and Cutting, explains, »The connection of combi-processing and capacitive component measurement is not only suitable for concealed t-joints in structural components of automobile construction, but can also offer new solutions wherever curved or deep-drawn sheet metal parts need to be joined together to create a precise sheet metal group in spite of their geometric tolerances.«

TCP and processing heads were also a part of another process developed at the Fraunhofer ILT: an image processing system »observes« the laser processing position on the workpiece directly through the processing optics – analogous to photography with a single lens reflex camera. The direct surroundings of the processing position are analyzed by a camera system with downstream image processing. »The system measures directly in the area of the processing position and not at the head or in the robot axes,« explains Dipl. Ing. Christoph Franz, scientist at the Fraunhofer ILT. »Since the process gauges the ongoing measurement accuracy, no measurement errors are made.« The measuring system records the current process speed and uncovers deviations from the preset values. It ensures that the processing head follows the contours of the workpiece exactly. According to Franz, »The user receives precise feedback on how the cinematic process parameters comply to the track that was previously programmed into the machine control system. With this process, the tracks of any processing system can be measured.« This is an important point with lasers, for which the so-called energy per unit length has to be constant during the entire processing.

Process Monitoring during »Laser Brazing«

In Hanover a joint development with the Fraunhofer IPT was also exhibited: »Coaxial Process Control (CPC)«, developed specially for laser brazing, takes the process zones under the magnifying glass in the visible and near infrared spectral range (NIR). The visible images deliver data on feed speed, wire position and geometric measurement of the braze seam. The NIR images informs users about the heat distribution in the workpiece, the emergence of pores or about single-sided moistening. »The process monitoring during the laser process makes a further production step – a time-consuming and expensive quality control – superfluous,« says Dipl.-Ing. Michael Ungers, scientist at the Fraunhofer ILT. The following speaks for the CPC model: in comprehensive test series with steel and aluminum working materials, the system was tested and also found suitable for automated process monitoring thanks to special software.

Contact Partners at the Fraunhofer ILT
Our experts would be glad to answer any questions you may have:
Dr. Dirk Petring
Group Manager, Macro Joining and Cutting
Telephone +49 241 8906-210
dirk.petring@ilt.fraunhofer.de
Dipl.-Ing. Christoph Franz
Sensors
Telephone +49 241 8906-621
christoph.franz@ilt.fraunhofer.de
Dipl.-Phys. Michael Ungers
Sensors
Telephone +49 241 8906-281
michael.ungers@ilt.fraunhofer.de
Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen, Germany
Tel. +49 241 8906-0
Fax. +49 241 8906-121

Axel Bauer | Fraunhofer ILT
Further information:
http://www.ilt.fraunhofer.de

More articles from Trade Fair News:

nachricht Fraunhofer ISE with over 60 Contributions at the European PV Solar Energy Conference and Exhibition
21.09.2018 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht IAA Commercial Vehicles 2018: Commercial vehicle model autonomously explores its surroundings
10.09.2018 | Technische Universität Kaiserslautern

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Matter falling into a black hole at 30 percent of the speed of light

24.09.2018 | Physics and Astronomy

NASA balloon mission captures electric blue clouds

24.09.2018 | Earth Sciences

New way to target advanced breast cancers

24.09.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>