Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

App-App-Hooray! - Innovative Kits for AR Applications

19.10.2018

The Fraunhofer FEP has been successfully developing OLED microdisplays based on OLED-on-silicon technology for years. Several generations of different designs have already been created. At the same time, the necessary electronics and system environment for future augmented reality (AR) applications are being developed at full speed. The developers will be debuting an innovative and powerful set of tools for independent development of wearables using OLED microdisplays at the Fraunhofer Joint Booth (no. 426, Hall C5) during electronica 2018, November 13-16, 2018 in Munich, Germany.

The Fraunhofer FEP presented the first ultra-low-power OLED microdisplays two years ago at electronica 2016. These microdisplays score thanks to their extremely power efficient concept and provide great possibilities to display razor-sharp information in many areas of application.


Application of the ultra-low-power OLED microdisplay in stock management

© Fraunhofer FEP, photographer Claudia Jacquemin

Contrary to the current trend of increasing resolutions of HD+ and higher and higher framerates, the FEP scientists continued to stick to their low-power approach, found the right design, and have been rewarded.

In the meantime, a well-known European display manufacturer became aware of this in-house development at Fraunhofer and is now mass-producing and marketing it. This is a prime example of Fraunhofer's application-oriented research – the ultra-low-power OLED microdisplays could be successfully transferred into production and thus brought to market.

But a display alone does not make an AR app! The scientists of the Department IC and System Design at the Fraunhofer FEP have now developed the electronics and the display to bring them simply and fast into real applications. A display element by itself is not enough.

The communication by the display with other interfaces and systems is the key to applications. A variety of inquiries, ideas, and application scenarios can be addressed with the microdisplay solution and its unique advantages.

The extremely small size of the ultra-low-power OLED microdisplay is perfect for miniaturized and lightweight systems that are portable and easy to integrate into clothing, helmets, and glasses. The OLED technology of the display provides sharp images with extremely high contrast and brightness, ranging from 20 to 5,000 nits (monochrome green).

Interested developers can now choose from three different display variants: displays with 304 × 128 pixels with 12 µm² pixel size and 4-bit grayscale, 304 × 256 pixels with 12 µm² pixel size and 4-bit grayscale, and 720 × 256 pixels with 5 µm² pixel size and 1-bit black-and-white image.

The ultra-low-power electronics concept addresses applications for harsh environments such as disaster management, for example, but also for industry and telemedicine, where long battery runtime without interruption for re-charging is indispensable. These requirements are met by the ultra-low-power characteristics.

However, a display lives from the information that a data source sends and that are to be displayed. The ultra-low-power concept is not about high-resolution video data at the highest frame rates, but instead about the display of simple characters, data, or information that are transmitted as commands with low latency. In the event of a major fire with a large number of emergency personnel, for example, the control center can use helmet integrated displays to quickly send precise and easy-to-understand instructions to the firefighters on site. By integrating a display into the helmet, the display could also function in areas with low visibility due to smoke.

The Fraunhofer FEP's innovative Bluetooth kit lays the foundations for augmented reality developments – such as a data helmet for emergency personnel or a worker in an Industry 4.0 setting – without long re-charging times.

The ultra-low-power design benefits from the low data transfer rate it uses. It was therefore logical to implement information transmission via Bluetooth Low Energy (BLE), since this technology consumes very little battery power. In principle, however, the connection to narrow-band low-power radio data networks such as the Narrow-Band Internet of Things (NB-IoT) and LoRaWAN (long-range wide-area network) are also conceivable.

Philipp Wartenberg, head of the Department IC and System Design at Fraunhofer FEP, explains: “We offer our industrial partners a complete system concept for controlling ultra-low-power OLED microdisplays over a universal Bluetooth connection.

This enables direct and wireless communication with the display out-of-the-box from various input devices such as smartphones, laptops, and wristbands.“ The vision of the developers: In the near future everyone could have a suitable microdisplay for their desired application that could be easily programmed by themselves.

Besides the display, the development kits contain everything required, from the optics up to the graphical user interface (GUI) for Windows or Android devices. The kits are tools for product developers as well as app developers to test their ideas in a simple and easier way and to play with the technology. These developers can also target the market for data glasses, which is predicted to grow by over 200 % between now and 2020.

But the system platform from Fraunhofer FEP offers advantages not only for data glasses. The Internet of Things is an enormous market for smart sensors and devices that communicate with each other and generate data that ultimately needs to be presented at a user interface. The ultra-low-power OLED microdisplay and the Bluetooth system platform together provide a powerful development tool for mobile devices of the future.

The Fraunhofer FEP scientists will present the new generation of displays with various application scenarios at electronica 2018, November 13-16, 2018 in Munich, Germany at the Fraunhofer Joint Booth (no. 426/Hall C5). The new electronics development with different application scenarios can be tested live on site and discussed with the developers.

Fraunhofer FEP at electronica 2018
November 13-16, 2018 in Munich, Germany
Fraunhofer Joint Booth (No. 426, Hall C5)

Talks
Wednesday, 14. November 2018,
10:05 - 10:30 a.m.: 2018FLEX Europe - Be Flexible
Title: “SmartEEs – Accelerating the uptake of Flexible Electronics”

03:20 - 03:40 p.m.: OE-A Seminar "Thin - Lightweight - Flexible: Organic and Printed
Electronics for the Individualized Mass Market“
Title: “Flexible OLED Lighting – Opportunities, Challenges, Solution”

Press contact:

Ms. Annett Arnold

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP
Phone +49 351 2586 333 | presse@fep.fraunhofer.de
Winterbergstraße 28 | 01277 Dresden | Germany | www.fep.fraunhofer.de

Weitere Informationen:

http://s.fhg.de/WqN

Franziska Lehmann | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP
Further information:
http://www.fep.fraunhofer.de/

More articles from Trade Fair News:

nachricht Medica 2018: Mobile motion feedback to help patients reduce relieving postures when walking
07.11.2018 | Technische Universität Kaiserslautern

nachricht Medica 2018: Control with your feet - computer game to help prevent thrombosis
05.11.2018 | Technische Universität Kaiserslautern

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>