Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Achema 2018: Researchers take a closer look at drops using 3D high-speed camera technology

28.05.2018

At a lotus leaf, drops simply roll off, but a concrete wall is wetted by them. The reason for this lies in the condition of the surface. Tiny structures are the reason for drops not to adhere to the surface. Researchers at the Technische Universität Kaiserslautern (TUK) are investigating this effect using a 3D high-speed camera system. This helps them to see what happens when drops hit difference surfaces. The findings could help to reduce machine wear and tear or to keep plants free of contamination.

During the Achema, a trade fair for the process industries in Frankfurt, they are presenting this technology at the research stand of the federal state Rhineland-Palatinate from June 11-15 (hall 9.2, stand A86a).


Fabian Krull (left) and Professor Sergiy Antonyuk ) are investigating what happens when drops hit difference surfaces.

Credit: TUK/Thomas Koziel

If drops of water fall on a lotus leaf, they simply roll off. This phenomenon, also known as "lotus effect", is based on the fact that the surface of those leafs shows unevenness (nubs) which in the end makes the drop roll off. The tiny structures were discovered by the botanist Wilhelm Barthlott in the 1970s thanks to a scanning electron microscope. The very same principle is now used for window glass or wall paint.

Researchers of the Department Mechanical and Process Engineering at the TU Kaiserslautern engage in this this phenomenon. They investigate the behavior of drops when they encounter surfaces which provide differently formed micro structures, such as nubs, grid or trapezoid.

"Here we deal with structures that are significantly smaller than the diameter of a hair, for example," says Fabian Krull, who investigates this topic within the scope of his doctorate at the Department of Particle Process Engineering of Professor Dr. Sergiy Antonyuk. They are in a range of 100 nanometer and 10 micrometer; dimensions not visible to the human eye. And still those structures can influence the impingement of drops on a surface in different ways.

In order to be able to observe this process in detail, three high-performance cameras are used. "They take pictures from different angles", says Fabian Krull. Software is used to then convert the data to a 3D picture. "That way we can observe step by step what happens when a drop hits different surfaces", explains Professor Antonyuk. Furthermore, the engineers simulate the fall of those drops with their computer models.

Research is carried out within the framework of the Collaborative Research Centre 926 "Component Surfaces: Morphology on a microscale", which is subsidized by the German Research Foundation. The researchers' findings might be able to help reduce friction of machines or design surfaces of industrial plants to prevent dust and contamination particles to accumulate on the machines. This would also be useful for hospitals so that microorganisms cannot adhere to certain things.

The engineers are presenting their camera system and research work at the Achema.

Questions can be directed to:
Prof. Sergiy Antonyuk
Phone: +49 (0) 631 205-3524
Email: sergiy.antonyuk(at)mv.uni-kl.de

Klaus Dosch, Department of Technology and Innovation, is organizing the presentation of the researchers of the TU Kaiserslautern at the fair. He is the contact partner for companies and, among other things, establishes contacts to science.
Contact: Klaus Dosch, Email: dosch[at]rti.uni-kl.de, Phone (also during the fair): +49 (0) 631 205-3001

Melanie Löw | Technische Universität Kaiserslautern

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Pressure tuned magnetism paves the way for novel electronic devices

18.12.2018 | Materials Sciences

New type of low-energy nanolaser that shines in all directions

18.12.2018 | Physics and Astronomy

NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate

18.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>