Ultrasound Palpation System

<strong>Background</strong><br>

The cartilage quality (thickness and stiffness) is commonly determined either visually or by manual palpation. Both procedures are subjective and highly dependent on the experience of the physician. Early signs of degeneration that are not associated with matrix destruction but with slight alterations of stiffness, cannot be diagnosed. <br><br> <strong>Technology</strong><br> The new ultrasound palpation system offers the possibility of a precise quantitative mechanical evaluation of cartilage tissue. The measuring device comprises an ultrasound transducer and an elastomer. Based on the transit-time differences of the received signal tray the compressional stiffness and thickness can be assessed in real-time by a free-hand palpation. Subtle changes in the cartilage-stiffness can be diagnosed at an early stage. <br><br> Thus, this positions the ultrasound palpation system as a reliable device for arthroscopic analyses and for tissue engineering in R&D. <br><br> <strong>Benefits</strong> <ul> <li>Fast and precise assessment of cartilage quality and quantity</li> <li>Sterilisable, robust device</li> <li>Automatic self-calibration </li> </ul> <p><strong>IP Rights</strong><br> DE provisional (10/2012) <br> <br> <strong>Patent Owner</strong><br> Charité University Medical Center Berlin

Further Information: PDF

ipal GmbH
Phone: +49 (0)30/2125-4820

Contact
Dr. Dirk Dantz

Media Contact

info@technologieallianz.de TechnologieAllianz e.V.

All latest news from the category: Technology Offerings

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors