Ultrashort Laser Pulse Filaments for Material Pro-cessing and Analysis

<strong>Technology</strong><br>

High-power femtosecond (fs) laser pulses have been found to propagate in transparent media and even in the atmosphere as thin white-light filaments. These filaments can be attributed to nonlinear optical phenomena. They can propagate over distances of several kilometres exhibiting power intensities on the order of 5×1013 W/cm2. If the filament hits a solid target, a plasma is ignited. Without any need of focussing equipment the laser beam can be used for example for welding or cutting processes. The spectroscopic analysis of the generated plasma is another application which allows determination of the solid state con-stituents. We offer a new method for material processing and material analysis by laser filaments.<br><br> <b>Benefits:</b><br> <ul> <li>Material processing and analysis at arbitrary distances</li> <li>No external focussing required</li> <li>No focus tracking required</li> </ul><br> <strong>IP Rights</strong><br> German Patent DE 10213044<br> US Patent US 8 097 830 <br> <br> <strong>Origin</strong><br> Freie Universität Berlin, Germany

Further Information: PDF

ipal GmbH
Phone: +49 (0)30/2125-4820

Contact
Dr. Dirk Dantz

Media Contact

info@technologieallianz.de TechnologieAllianz e.V.

All latest news from the category: Technology Offerings

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors