Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Highly specific DNA-interacting enzymes with programmable specificity

13.12.2006
Different enzyme families are used in vitro and in vivo for the manipulation of DNA. Restriction endonucleases, exonucleases, DNAseI, DNA repair enzymes and DNA methyltransferases, amongst others, belong to these enzyme families. However, the targeted and exclusive addressing of specific individual genes using these enzymes has not been possible, because the recognition site of the enzyme occurs severalfold in the target DNA.

The invention presented here produces, on the contrary, enzyme conjugates, which specifically interact with target DNA: It also provides methods for manufacturing these enzyme conjugates. Using a linker, enzymes are covalently bonded to enzyme conjugates with a specificity anchor. Here the specificity anchor refers to, for example, oligonucleotide derivatives or peptide nucleic acids that, adjacent to the recognition site for the enzyme residue, are characterised by a triplex forming site (TFS) on the target DNA, whereby the specificity anchor and the linker determine in which position on the target DNA and in which distance to the enzyme residue the triplex formation between the TFS of the target DNA and the triplex forming specificity anchor of the conjugate takes place. As a result, the specificity of a enzyme conjugate according to the current invention can be ?programmed? so that ideally only one single recognition site exists on the target DNA for the enzyme conjugate. Even if the recognition site for the conjugate appears more than once, the number of positions in which the target DNA binds with the conjugate is significantly smaller than the number of recognition sites for the unconjugated enzyme.

Further Information: PDF

TransMIT Gesellschaft für Technologietransfer mbH
Phone: +49 (0)641/943 64-12

Contact
Dr. Peter Stumpf

info@technologieallianz.de | TechnologieAllianz e.V.
Further information:
http://www.technologieallianz.de/angebote.php?sort=sag&id=0827&lang=en
http://www.technologieallianz.de

More articles from Technology Offerings:

nachricht New Lithium Salts of Pentafluorophenylamide Anions as Electrolytes in Lithium Ionic Batteries
18.04.2017 | TechnologieAllianz e.V.

nachricht Gratings on glass surfaces
28.03.2017 | TechnologieAllianz e.V.

All articles from Technology Offerings >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

Im Focus: Manipulating non-magnetic atoms in a chromium halide enables tuning of magnetic properties

New approach creates synthetic layered magnets with unprecedented level of control over their magnetic properties

The magnetic properties of a chromium halide can be tuned by manipulating the non-magnetic atoms in the material, a team, led by Boston College researchers,...

Im Focus: A new method to significantly increase the range and stability of optical tweezers

Scientists of Tomsk Polytechnic University jointly with a team of the V.E. Zuev Institute of Atmospheric Optics of the Siberian Branch of the Russian Academy of Sciences have discovered a method to increase the operation range of optical traps also known

Optical tweezers are a device which uses a laser beam to move micron-sized objects such as living cells, proteins, and molecules. In 2018, the American...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Novel approach improves graphene-based supercapacitors

03.08.2020 | Information Technology

Germany-wide rainfall measurements by utilizing the mobile network

03.08.2020 | Information Technology

Drug discovery: First rational strategy to find molecular glue degraders

03.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>