Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Copper-oxygen adduct complexes

25.06.2008
The new copper-oxygen adduct complexes according to the present invention are thermally stable at room temperature (and above), for the first time, as well as in oxygen-containing atmosphere, i.e. stable as a solid and suitable for being used as oxidation catalysts especially in industrial chemistry, for instance for the oxidation of benzene to phenol or of methane to methanol, for the oxidation of hydrogen, aromatic and aliphatic, saturated and unsaturated hydrocarbons as well as alcohols and amines.<p>

The possibility of using monovalent copper complexes with tripodal tetradentate ligands as an oxidising agent is definitely known by the state of the art. These are, however, thermally instable due to their oxygen sensitivity (i.e. they can only be conserved for a short time at temperatures significantly inferior to 0°C) and, thus, only usable in a restricted manner as oxidation catalysts. The invention at hand overcomes this disadvantage in the state of the art first by complexing a tripodal tetradentate ligand with a Cu-(I) compound and then by replacing the anion of this complex with a tetraarylborate and finally by exposing the [Cu-L]-tetraarylborate complex to a oxygen-containing atmosphere. This last reaction step is also suitable for being used in detecting oxygen.<p> These oxidation methods can be transferred by the invention at hand from laboratory scale to a industrial application: The copper-(II)-oxygen adduct complexes according to the present invention are, for instance, suitable for being deposited as reactive components in mesoporous phases such as molecular sieves or on zeolites or polystyrenes.

Further Information: PDF

TransMIT Gesellschaft für Technologietransfer mbH
Phone: +49 (0)641/943 64-12

Contact
Dr. Peter Stumpf

info@technologieallianz.de | TechnologieAllianz e.V.
Further information:
http://www.technologieallianz.de/angebote.php?sort=sag&id=1321&lang=en
http://www.technologieallianz.de

More articles from Technology Offerings:

nachricht New Lithium Salts of Pentafluorophenylamide Anions as Electrolytes in Lithium Ionic Batteries
18.04.2017 | TechnologieAllianz e.V.

nachricht Gratings on glass surfaces
28.03.2017 | TechnologieAllianz e.V.

All articles from Technology Offerings >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>