FTO Knock-out – Non-human mammals for elucidating the role of FTO in obesity

Obesity is a growing health problem in the industrialised

countries. Especially cardiovascular diseases and type II diabetes are closely linked to a high body mass index (BMI). Humans with a BMI above 40 are considered morbidly obese. Apart from diet and lack of exercise also genetic predisposition is a major factor in obesity. Various genes have been studied to elucidate the role in increased body weight. The fat mass and obesity associated gene (FTO) is located on human chromosome 16. While the phenotypic association is clear, the physiological basis is poorly understood. FTO contains a nuclear localisation signal and shows a ubiquitous expression pattern including metabolically relevant tissues such as pancreas, liver and the hypothalamus. The present invention provides non-human mammals with partial or total disruption of the FTO gene or protein function. The invention provides model animals for studying the functional role of FTO. It further provides mammalian cells for high throughput screening of agents modifying the function of FTO.

Further Information: PDF

PROvendis GmbH
Phone: +49 (0)208/94105 0

Contact
Dipl.-Ing. Alfred Schillert

Media Contact

info@technologieallianz.de TechnologieAllianz e.V.

All latest news from the category: Technology Offerings

Back to home

Comments (0)

Write a comment

Newest articles

New yttrium-hydrogen compounds discovered

Researchers at the University of Bayreuth have made a significant scientific breakthrough by discovering new yttrium-hydrogen compounds having serious implications for the research on high-pressure superconductivity. High-pressure superconductivity refers to…

New AI model detects ninety percent of lymphatic cancer cases

Medical image analysis using AI has developed rapidly in recent years. Now, one of the largest studies to date has been carried out using AI-assisted image analysis of lymphoma, cancer…

UTA preps giant particle detectors for neutrino project

Excavation of caverns part of Fermilab’s Deep Underground Neutrino Experiment. With excavation work complete at the site where four gigantic particle detectors for the international Deep Underground Neutrino Experiment (DUNE) will be…

Partners & Sponsors