Nucleic Fluorescent Probes for the Specific Detection of Single Base Alterations

The present invention relates to forced intercalation probes (FIT-probes) based on nucleoside analogues with fluorescent artificial nucleobases. Thereby the nucleoside analogue is incorporated into DNA or RNA in the place of a single native base.<br>As such, FIT-probes may be employed in a large number of applications including genetic diagnostics, disease predisposition, pharmacogenetics and pathogen detection. The FIT-probes exhibit a simplistic mode of action and are able to detect single base alteration. They further possess few design constraints and show melting peak data which can be interpreted easily. The assay has been demonstrated to function efficiently directly from samples without prior purification of nucleic acids making the probe technology suitable for point-of-care diagnostics.</p>

<p><strong>Benefits</strong> <ul> <li>More specific and sensitive than common PNA probes</li> <li>First time manufacturing of DNA probes</li> <li>Abdication of linker enhances dye properties</li> <li>Enhanced sensitivity as probes differ between correct and incorrect hybridization</li> <li>Application at room temperature</li> <li>Wide range of application</li> <li>DNA probes allow detection in living cells by Fluorescence in situ hybridization (FISH)</li> <li>Enzyme activity is not influenced</li> <li>Inexpensive production</li> </ul> <p><strong>IP Rights</strong><br> An European application was filed on September 8th, 2009.<br> <br> <strong>Origin</strong><br> The technology was developed at the Humboldt-Universität Berlin, Germany.<br>  </p>

Further Information: PDF

ipal GmbH
Phone: +49 (0)30/2125-4820

Contact
Dr. Dirk Dantz

Media Contact

info@technologieallianz.de TechnologieAllianz e.V.

All latest news from the category: Technology Offerings

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors