MOD-FC – Modular fuel cell stack

A modern fuel cell is usually made of a stack of individual cells that are mechanically pressed together. In MOD-FC the pressing takes place not mechanically but hydraulically. Due to the complete flushing of separate individual cells with the hydraulic medium, a homogeneous pressing of the inner cell components is ensured. In addition, the hydraulic medium can be directly used as a cooling medium. This ensures a homogeneous electric current generation among the surface and also that no life shortening hot spots appear.
By the nearly ideal operating conditions MOD-FC are capable to examine in-situ membrane electrode units. First functional models are already in use (see figure). A plurality of simultaneously reproducible samples can be examined under the same operating conditions, which improve the quality of test results and reduces significantly the amount of sampling tests. Moreover, individual elements can be replaced by separate individual cells without great effort, due to the modular design of the stacks. In contrast to conventional fuel cell stacks MOD-FC can thus be maintained at a cellular basis.

Further information: PDF

PROvendis GmbH
Phone: +49 (0)208/94105 10

Contact
Dipl.-Ing. Alfred Schillert

As Germany's association of technology- and patenttransfer agencies TechnologieAllianz e.V. is offering businesses access to the entire range of innovative research results of almost all German universities and numerous non-university research institutions. More than 2000 technology offers of 14 branches are beeing made accessable to businesses in order to assure your advance on the market. At www.technologieallianz.de a free, fast and non-bureaucratic access to all further offers of the German research landscape is offered to our members aiming to sucessfully transfer technologies.

Media Contact

info@technologieallianz.de TechnologieAllianz e.V.

All latest news from the category: Technology Offerings

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors