Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel Method for the Creation of Autostereoscopic Images

19.10.2012
<strong>Background</strong><br>

Lenticular images are 3 dimensional autostereoscopic images that can be seen directly without any optical aids. To date those images are produced by dividing numerous pictures in stripes, mixing those stripes in a defined way and then presenting them through a lenticular grid (Interlace method). Unfortunately this method provides only a limited 3D- effect for the efficient viewing angle is very small. Furthermore images produced by the Interlace method have often a poor image quality. <br><br> <strong>Technology</strong><br> To overcome those disadvantages, we offer a new technology for fabrication 3D autostereoscopic images. The new procedure – Virtual Lenticular Rendering (VLR) - for fabrication of 3D-Images creates photographs (Parallax-Panoramagram) directly by only one rendering step based on radiation pattern construction. Therefore a virtual lenticular grid is created by computer and attached with a synchronized refraction index. This allows generating the specific illustration elements and their exact position as well as the concrete surface texture in an enhanced way.<br><br>

</strong><strong>Benefits</strong><br> <ul> <li>Procedure is independent from lenticular grid size and lense shape</li> <li>Enhanced 3 dimensional illustration</li> <li>Possibility to use novel lenticular grid</li> <li>Creation of lenticular images in high quality in only one rendering step by computer</li> </ul><br> </strong><strong>IP Rights</strong><br> German Patent Application DE102008025103A1<br> European Patent Application EP2297970A2<br> US Patent Application US2011141107A1<br><br> <strong>Origin</strong><br> The technology was developed at the Technische Universität Berlin.<br><br>

Further Information: PDF

ipal GmbH
Phone: +49 (0)30/2125-4820

Contact
Dr. Dirk Dantz

info@technologieallianz.de | TechnologieAllianz e.V.
Further information:
http://www.technologieallianz.de/angebote.php?sort=sag&id=2773&lang=en
http://www.technologieallianz.de

More articles from Technology Offerings:

nachricht New Lithium Salts of Pentafluorophenylamide Anions as Electrolytes in Lithium Ionic Batteries
18.04.2017 | TechnologieAllianz e.V.

nachricht Gratings on glass surfaces
28.03.2017 | TechnologieAllianz e.V.

All articles from Technology Offerings >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>