Manipulation of the growth of living cells via cell-surface-interaction

Scientists of Saarland University have developed a setup, which allows a controlled manipulation of cells via cell‐surface‐interaction. Therefore biocompatible magnetic nanoparticles are functionalized with biomolecules, which in turn are able to bind specific cell types. These particles are immobilized on a magnetic substrate as well and the complex can be placed in any kind of cell culture vessel. Influenced by external magnetic fields, domain structures are formed by the complex. These domains can be changed at any time during cell cultivation through external fields as the immobilized particles follow those changes due to their magnetic interaction. The setup is computer‐controlled and allows to observe the cell behaviour over several days. Moreover a direct reaction to this is possible by manipulating the domain structure via external magnetic fields.

Further Information: PDF

Universität des Saarlandes Wissens- und Technologietransfer GmbH PatentVerwertungsAgentur der saarländischen Hochschulen
Phone: +49 (0)681/302-71302

Contact
Dipl.-Kfm. Axel Koch (MBA), Dr. Conny Clausen, Dr. Hauke Studier, Dr. Susanne Heiligenstein

Media Contact

info@technologieallianz.de TechnologieAllianz e.V.

All latest news from the category: Technology Offerings

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors