Induced Somatic Stem Cells – Reprogramming of somatic cells to neural stem cells

Since the pioneer work published by Takahashi & Yamanaka, the technique of reprogramming cells from a differentiated to an embryonic-like status has experienced an exploding development in regard to both techniques and applications. The most obvious application is the use in tissue regeneration. However, two key obstacles need to be overcome for clinical realization, i.e. risk of reprogrammed cells to develop neoplasiae as well as cumbersome and costly cell culture procedures. Therefore, it is imperative to develop cost-efficient methods with a lower the risk of cancer. The present invention has solved this problem by using a modification of the originally described method. Here, the transcription factors Sox2, cMyc and Klf4 are exogenously and stably expressed, whereas Oct4 is introduced with an exogenous transient expression system. This method is qualified to produce autologous neural stem cells that proliferate indefinitely and are able to re-differentiate into functional neural cells. The technology therefore applies to the tissue regeneration of neural tissue and disease modelling, especially in the central nervous system.

Further information: PDF

PROvendis GmbH
Phone: +49 (0)208/94105 10

Contact
Dipl.-Ing. Alfred Schillert

As Germany's association of technology- and patenttransfer agencies TechnologieAllianz e.V. is offering businesses access to the entire range of innovative research results of almost all German universities and numerous non-university research institutions. More than 2000 technology offers of 14 branches are beeing made accessable to businesses in order to assure your advance on the market. At www.technologieallianz.de a free, fast and non-bureaucratic access to all further offers of the German research landscape is offered to our members aiming to sucessfully transfer technologies.

Media Contact

info@technologieallianz.de TechnologieAllianz e.V.

All latest news from the category: Technology Offerings

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors