High Performance Quantum Cascade Laser

<strong>Background</strong><br>

Semiconductor lasers generate a significant amount of heat during operation, which causes a number of undesirable effects including increasing the current necessary for a given emission intensity and shorter device lifetime. Especially quantum cascade lasers (QCL) are sensitive to temperature, which results in a reduction in light emission or a cessation of laser operation. <br><br> <strong>Technology</strong><br> The QCL consists of an active zone which comprises a cascade structure and an insulating heat-dissipating zone which is laterally adjoined to the active zone. The active zone, which generates heat, is made from a semiconductor material with high crystalline order. The insulating heat-dissipating zone is made from an electrically insulating, heat conducting material which is identical to the semiconductor material of the active zone. The electrically insulating property of the heat-dissipating material is based on a reduced level of crystalline order compared to the semiconductor material of the active zone. The crystal defects result from growth on an underlying amorphous film. The pre-patterned substrate is made of a robust amorphous material and is able to withstand temperatures of growth and processing up to ~ 600 °C. The active regions are defined prior to epitaxy so that the processing is largely finished (except for metallization) when the structure emerges from the epitaxy reactor. <br><br> <strong>Benefits</strong><br> <ul> <li>Easy and low cost manufacturing (one growth step, one reactor)</li> <li>Improved heat dissipation </li> </ul><br> <strong>IP Rights</strong><br> European patent EP 1 835 575 B1<br> <strong><br> Origin</strong><br> Humboldt-Universität zu Berlin</p> <p> </p>

Further Information: PDF

ipal GmbH
Phone: +49 (0)30/2125-4820

Contact
Dr. Dirk Dantz

Media Contact

info@technologieallianz.de TechnologieAllianz e.V.

All latest news from the category: Technology Offerings

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors