Handling Robot SAMARA

The handling robot system SAMARA (System Applying Momentum transmission for Acceleration of an end-effector with Redundant Axis) combines the advantages of heavy payloads and wide working space from Scara robots with the high acceleration of Delta robots. This is achieved by a new motion sequence that is characterized by a steadily rotation of the first axis. Thus it is necessary to accelerate only small masses, as the main part of energy used for the motion cycle is kept for the following cycle.<br><br>By applying such a redundant axis the kinetic energy can be retained in the robot links during a picking process and returned to the effector for speeding up the whole robot additional to the drives torques. As the nullspace movement ends with a stretched second and third link, acceleration of the effector must be regarded as an impulse, leading to acceleration of 20g. <br>

SAMARA allows solving “pick and place“ tasks even for heavy loads extremely fast, precise and energy-beneficial with only little space required for the SAMARA robot itself.<br> <br> <strong>Benefits</strong><br> <ul> <li>Under actuated motion</li> <li>Highly dynamic operation of multiple arms within same work space</li> <li>Suitable for heavy payloads</li> <li>Wide working space</li> <li>High acceleration (up to 20g)</li> <li>Only low space required</li> <li>Flexible and very precise</li> <li>Combination of various end-effectors possible</li> <li>Continuous movement reduces energy loss caused by stopping and change of direction</li> </ul><br> <strong>IP Rights</strong><br> German Patent Application <br> <br> <strong>Patent Owner</strong><br> Technische Universität Berlin<br>

Further Information: PDF

ipal GmbH
Phone: +49 (0)30/2125-4820

Contact
Dr. Dirk Dantz

Media Contact

info@technologieallianz.de TechnologieAllianz e.V.

All latest news from the category: Technology Offerings

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors