Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enhanced Bioethanol Production in Yeast

11.07.2012

Technology

Novel genetic engineered yeast strains (Saccharomyces cerevisae) have been established that produce increased ethanol yield while simultaneously reduce the production of the unwanted by-product glycerol. It is a strong industrial interest to reduce the glycerol formation during glucose catabolism and thereby increasing ethanol yield, also because glycerol disturbs the distillation process. Past approaches to reduce glycerol formation based e.g. on the deletion of either one or the two genes gpd1 and gpd2 of glycerol-3-phosphate dehydrogenase (GPDH), which is the rate-controlling enzyme in the glycerol formation pathway of the yeast Saccharomyces cerevisae. These isoenzymes play also a crucial role in osmoregulation and redox balance. While single deletion of either gpd1 or gpd2 does not noticeble decrease glycerol production, the gpd1∆gpd2∆ double deletion strain produces no glycerol, however with the negative side effect that growth and ethanol production is abolished under anaerobic conditions and strongly reduced under aerobic conditions.<br><br> In the novel genetic engineering approaches, a) the Gpd1 enzyme activity is only partly reduced in a gpd2∆-deleted CEN-PK113 yeast strain background by replacing the strong natural gpd1 promotor by a weak TEF1 promotor mutant or b) both enzyme activities of GPD1 and GPD2 are partly reduced. The strains with reduced GPD1 and GPD2 activity show an increase in ethanol production by 2-5% and a reduction in glycerol formation by 61-88% compared to wild type and a slight better growth rate than the TEFmut:GPD1 gpd2∆-strain (ethanol increase: 6,3%; glycerol formation reduction by 64%).

Benefits:

  • Increased ethanol yield and reduced glycerol production
  • Biomass and osmotolerance are not negatively influenced
  • Strains are able to completely ferment the sugars under quasi-anaerobic conditions (minimal medium or liquefied wheat mash)
  • Tolerate high ethanol concentration up to 90 g per liter

IP Rights

  • EP Application (10/2008)
  • Brazil Patent Application (10/2008)
  • US Patent Application (10/2008)
  • Priority Date: 10/2007

Patent Owner

The technology was developed at the Technische Universität Berlin. 


Weitere Informationen: PDF

ipal GmbH
Tel.: +49 (0)30/2125-4820

Ansprechpartner
Dr. Dirk Dantz

info@technologieallianz.de | TechnologieAllianz e.V.
Further information:
http://www.technologieallianz.de/angebote.php?sort=sag&id=1224&lang=de
http://www.technologieallianz.de

More articles from Technology Offerings:

nachricht New Lithium Salts of Pentafluorophenylamide Anions as Electrolytes in Lithium Ionic Batteries
18.04.2017 | TechnologieAllianz e.V.

nachricht Gratings on glass surfaces
28.03.2017 | TechnologieAllianz e.V.

All articles from Technology Offerings >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Epoxy compound gets a graphene bump

14.11.2018 | Materials Sciences

Microgel powder fights infection and helps wounds heal

14.11.2018 | Health and Medicine

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>