Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enhanced Bioethanol Production in Yeast

11.07.2012

Technology

Novel genetic engineered yeast strains (Saccharomyces cerevisae) have been established that produce increased ethanol yield while simultaneously reduce the production of the unwanted by-product glycerol. It is a strong industrial interest to reduce the glycerol formation during glucose catabolism and thereby increasing ethanol yield, also because glycerol disturbs the distillation process. Past approaches to reduce glycerol formation based e.g. on the deletion of either one or the two genes gpd1 and gpd2 of glycerol-3-phosphate dehydrogenase (GPDH), which is the rate-controlling enzyme in the glycerol formation pathway of the yeast Saccharomyces cerevisae. These isoenzymes play also a crucial role in osmoregulation and redox balance. While single deletion of either gpd1 or gpd2 does not noticeble decrease glycerol production, the gpd1∆gpd2∆ double deletion strain produces no glycerol, however with the negative side effect that growth and ethanol production is abolished under anaerobic conditions and strongly reduced under aerobic conditions.<br><br> In the novel genetic engineering approaches, a) the Gpd1 enzyme activity is only partly reduced in a gpd2∆-deleted CEN-PK113 yeast strain background by replacing the strong natural gpd1 promotor by a weak TEF1 promotor mutant or b) both enzyme activities of GPD1 and GPD2 are partly reduced. The strains with reduced GPD1 and GPD2 activity show an increase in ethanol production by 2-5% and a reduction in glycerol formation by 61-88% compared to wild type and a slight better growth rate than the TEFmut:GPD1 gpd2∆-strain (ethanol increase: 6,3%; glycerol formation reduction by 64%).

Benefits:

  • Increased ethanol yield and reduced glycerol production
  • Biomass and osmotolerance are not negatively influenced
  • Strains are able to completely ferment the sugars under quasi-anaerobic conditions (minimal medium or liquefied wheat mash)
  • Tolerate high ethanol concentration up to 90 g per liter

IP Rights

  • EP Application (10/2008)
  • Brazil Patent Application (10/2008)
  • US Patent Application (10/2008)
  • Priority Date: 10/2007

Patent Owner

The technology was developed at the Technische Universität Berlin. 


Weitere Informationen: PDF

ipal GmbH
Tel.: +49 (0)30/2125-4820

Ansprechpartner
Dr. Dirk Dantz

info@technologieallianz.de | TechnologieAllianz e.V.
Further information:
http://www.technologieallianz.de/angebote.php?sort=sag&id=1224&lang=de
http://www.technologieallianz.de

More articles from Technology Offerings:

nachricht New Lithium Salts of Pentafluorophenylamide Anions as Electrolytes in Lithium Ionic Batteries
18.04.2017 | TechnologieAllianz e.V.

nachricht Gratings on glass surfaces
28.03.2017 | TechnologieAllianz e.V.

All articles from Technology Offerings >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Journey to the center of Mars

20.02.2020 | Physics and Astronomy

Laser writing enables practical flat optics and data storage in glass

20.02.2020 | Physics and Astronomy

New graphene-based metasurface capable of independent amplitude and phase control of light

20.02.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>