Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Click-reactive Lipid Analysis - Efficient and optimized click-reaction for the detection and determination of Lipids

21.03.2013
The study of metabolic overload diseases has become an important focus of biomedical research, driven by the need to understand the consequences of over-caloric westernized diet. Since metabolic overload usually leads to obesity, studies of fatty acid metabolism are a central aspect of current metabolism research.

While the need for detailed quantitative information about fatty acid metabolism from all available model systems, such as purified proteins, cultivated cell lines, primary cells, isolated organs and whole organisms is steadily increasing, we face a concomitant decrease of the accessibility and acceptance of a major technology used to obtain these data in the last 60 years, namely the use of radiolabeled fatty acids for monitoring fatty acid metabolism because of the related costs and safety concerns. Another drawback is the limited sensitivity of experiments using radioactive fatty acids. The relevant isotopes, 3H and 14C, have moderate or low specific activities and require long exposure times in order to obtain a meaningful result.

Click-chemistry allows the sensitive and specific detection of compounds containing azido groups or terminal alkynes. Both can be integrated into fatty acids without major disturbance of the structure of the hydrophobic hydrocarbon chains. Click-labeled precursors have already been proposed to replace radioactive molecules in metabolic labeling experiments, including amino acids, nucleotides or lipids. However, the use of click-labeled fatty acids to monitor cellular lipid metabolism has been hampered by the lack of existing protocols that allow sensitive detection of click-labeled lipids. The present invention solves this problem by use of a fluorogenic click-reaction combined with an optimized protocol for the detection reaction, TLC separation, and fluorescence detection. By the use of this invention, it is possible to generate an image of the original metabolism as such.

Further Information: PDF

PROvendis GmbH
Phone: +49 (0)208/94105 10

Contact
Dipl.-Ing. Alfred Schillert

info@technologieallianz.de | TechnologieAllianz e.V.
Further information:
http://www.technologieallianz.de/angebote.php?sort=sag&id=3083&lang=en
http://www.technologieallianz.de

More articles from Technology Offerings:

nachricht New Lithium Salts of Pentafluorophenylamide Anions as Electrolytes in Lithium Ionic Batteries
18.04.2017 | TechnologieAllianz e.V.

nachricht Gratings on glass surfaces
28.03.2017 | TechnologieAllianz e.V.

All articles from Technology Offerings >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>