Anode Material for Lithium-Ion Batteries – Carbon coated iron oxide and zinc ferrite nanoparticles

The presented technology offers methods for the synthesis and preparation of carbon coated metal oxide nanoparticles for application as anodic materials in lithium-ion batteries. Carbon coated Fe2O3 and ZnFe2O4 can be used in combination with carboxymethyl-cellulose (CMC) as binder obtaining highly mechanically stable electrodes.

Commercial Opportunities: The use of these carbon coated metal oxide nanoparticles enables the realization of environmentally friendly, cost-effective, and lightweight electrochemical energy storage devices for future large scale applications. Transition metal oxides provide higher specific capacities compared to graphite, which is the actual state-of–the-art in Li-ion batteries. Nevertheless, the main drawback of these conversion materials so far has been a reduced cycling stability and limited obtainable specific capacities at elevated applied current densities. However, these drawbacks could be overcome by utilizing the new carbon coated metal oxide nanoparticles. As a matter of fact, by using these materials it is possible to realize batteries offering a superior electrochemical performance at high current densities and advanced cycle life. Moreover, such enhanced electrodes are easily recyclable and 100% environmentally friendly.

Further Information: PDF

PROvendis GmbH
Phone: +49 (0)208/94105 10

Contact
Dipl.-Ing. Alfred Schillert

Media Contact

info@technologieallianz.de TechnologieAllianz e.V.

All latest news from the category: Technology Offerings

Back to home

Comments (0)

Write a comment

Newest articles

Solving the riddle of the sphingolipids in coronary artery disease

Weill Cornell Medicine investigators have uncovered a way to unleash in blood vessels the protective effects of a type of fat-related molecule known as a sphingolipid, suggesting a promising new…

Rocks with the oldest evidence yet of Earth’s magnetic field

The 3.7 billion-year-old rocks may extend the magnetic field’s age by 200 million years. Geologists at MIT and Oxford University have uncovered ancient rocks in Greenland that bear the oldest…

Mini-colons revolutionize colorectal cancer research

As our battle against cancer rages on, the quest for more sophisticated and realistic models to study tumor development has never been more critical. Until now, research has relied on…

Partners & Sponsors