Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two brain regions join forces for absolute pitch

07.01.2015

People who have “absolute pitch” can identify notes immediately without relying on a reference tone. Intensive research is being conducted into the neuronal basis of this extraordinary ability at the University of Zurich’s Department of Neuropsychology. The researchers have now detected a close functional link between the auditory cortex in the brain and the frontal lobe in these extraordinary people – a discovery that is not only important in theory, but also in practice.

Mozart, Bach and Beethoven are all supposed to have had it: “absolute pitch” – the ability to identify and categorize a note without having to rely on any reference tones. People with absolute pitch perceive a note and can identify it accurately as C sharp, A or F sharp, for instance.

Most other people are only able to distinguish between notes relatively. While, with a prevalence of one percent in the normal population, the remarkable ability is relatively rare, it is observed twenty percent more frequently in professional musicians. It is often suspected that this special hearing skill is a key aspect of extraordinary musical talent.

A team headed by Professor Lutz Jäncke has already been conducting intensive research into this phenomenon in the Music Lab at UZH’s Department of Neuropsychology for many years. In a current study involving musicians with absolute pitch, there is now evidence that, according to first author Stefan Elmer, opens up a new view on the underlying psychological and neurophysiological processes involved in absolute pitch:

“Our study shows how two brain regions, namely the auditory cortex and the dorsal frontal lobe, work together for absolute pitch. In the process, we combine two essentially conflicting explanatory approaches for the phenomenon.”

Two theories on absolute pitch
One explanation assumes that people with absolute pitch already categorize the notes at a very early stage of sound processing. In other words, they process tones in the same way as speech sounds and assign them to particular categories, which is referred to as the categorical perception of tones. This theory assumes that the tones are already processed in the primary and secondary auditory cortex in the brain in people with absolute pitch.

Another theory suggests that people with absolute pitch only process the notes later on and associate them with memory information. People with this gift supposedly master the subconscious allocation of the tones to memory information particularly well. These allocations primarily take place in the upper frontal lobe, in the dorsal frontal cortex. “Therefore, both theories make completely different statements regarding the moment and the anatomical location of the special processing and there is evidence to support both theories,” explains Jäncke.

Connected brain regions explain the phenomenon
In his study, Stefan Elmer is now able to show that functionally the left-hand auditory cortex and the left-hand dorsal frontal cortex are already strongly linked in a dormant state – in other words, when there are no tasks to be performed. This functional coupling could be estimated based on a mathematical technique, which uses surface electroencephalography to extrapolate the brain activity inside the brain. In people with absolute pitch, the neurophysiological activity in the frontal and auditory cortex are synchronized, which suggests a close functional connection.

This means that the brain regions that control early perception functions (auditory cortex) or late memory functions (dorsal frontal cortex) are already tightly interwoven in a dormant state. “This coupling enables an especially efficient exchange of information between the auditory cortex and the dorsal frontal cortex in people with absolute pitch, which means that the perception and memory information can be exchanged quickly and efficiently,” explains Elmer.

Training auditory perception
The results are not only important to understand absolute pitch, but also efficient auditory processing: “Auditory perception doesn’t only depend on the integrity of the auditory cortex, but also especially on the linking of the auditory cortex with superordinate brain structures that process memory information,” sums up Jäncke. Based on these results, it might be possible to develop training measures, which would improve the auditory skills in old age, but also in connection with different hearing impairments.

Literature:
Stefan Elmer, Lars Rogenmoser, Jürg Kühnis und Lutz Jäncke. Bridging the gap between perceptual and cognitive perspectives on absolute pitch. The Journal of Neuroscience, January 6, 2015. Doi: 10.1523/JNEUROSCI.3009-14.2015

Contacts:
Prof. Lutz Jäncke
Department of Psychology – Neuropsychology
University of Zurich
Tel.: +41 44 635 74 00
Email: l.jaencke@psychologie.uzh.ch

Bettina Jakob
Media Relations
University of Zurich
Tel.: +41 44 634 44 39
Email: bettina.jakob@kommunikation.uzh.ch

Weitere Informationen:

http://www.mediadesk.uzh.ch

Nathalie Huber | Universität Zürich

More articles from Social Sciences:

nachricht New measure for the wellbeing of populations could replace Human Development Index
07.11.2018 | International Institute for Applied Systems Analysis (IIASA)

nachricht Because not only arguments count
30.10.2018 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>