Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The transparent soccer player

05.06.2018

How can success in soccer be measured? With the amount of positional data available in modern soccer, this question seems particularly interesting in the run-up to a World Cup. Sports data scientist Dr. Daniel Link from the Technical University of Munich (TUM) has developed a model that can be used to measure how likely a team is to score a goal during a match.

Goals in soccer only provide limited information about a team’s performance and the quality of its players: Goals are scored only rarely in soccer, and can come about through an individual moment of loss of concentration, while a very dominant team might simply be unlucky sometimes.


Traditional indicators such as shots on goal, number of completed passes, tackle rates, team ball possession, and distances covered are widely used, especially in the media, but their significance for performance is doubtful. In the 2014 World Cup semi-final, for example, Germany had fewer shots on goal than Brazil (14-18), but hardly any observer would doubt Germany’s superiority in that match (7-1 goals).

The book “Data Analytics in Professional Soccer” by Dr. Daniel Link posits situations that present the danger of a goal being scored as central criteria for “performance” in soccer. “In soccer, the most important thing is for a team to get the ball into the dangerous area around the goal and to prevent the opposing team from doing the same,” said the scientist from the Chair of Performance Analysis and Sports Informatics at TUM. In his recently published work, he presents six individual studies with innovative mathematical approaches to match analysis and player evaluation in professional soccer.

Real-time analysis using optical tracking

In Chapter 3, originally published in “PLOS One”, the sports scientist presents objective criteria for determining team performance in real time using a specially developed algorithm. He uses this procedure to determine a quantitative representation of the probability of a goal being scored for each point in time at which a player is in possession of the ball — “I call this Dangerousity,” said Link. The calculation of this metric is based on the spatial constellation of the player and the ball and comprises four components: Zone, Control, Pressure, and Density. The term “Dangerousity” has since been widely adopted by the global sports data community.

The author has used this approach by evaluating 64 Bundesliga matches in cooperation with the German Soccer League (DFL). An optical tracking system was used to acquire the positional data of the players and the ball. In addition, the evaluation by Link’s algorithm was compared with assessments of semi-professional soccer coaches in 100 match scenarios and showed a high agreement between the computer and the humans. The analysis was supported by the DFL subsidiary Sportec Solutions (STS).

“Dangerousity can be used to derive further metrics that can help answer questions regarding the analysis of the match,” said the sports scientist when explaining his new approach. “We use these metrics to analyze individual actions in a match, to describe passages of play, and to characterize the performance and efficiency of teams over the course of a season.”

For future studies, they provide a criterion that does not depend on chance or results to investigate the influence of central events in a soccer match, various playing systems, or tactical group concepts on success.

Publication:

Daniel Link: Data Analytics in Professional Soccer – Performance Analysis Based on Spatiotemporal Tracking Data, Springer Vieweg 2018. ISBN 978-3-658-21177-6

Contact:
PD Dr. Daniel Link
Technical University of Munich
Chair for Training Science and Computer Science in Sports
Phone: 0049/89/289 24498
daniel.link@tum.de

Weitere Informationen:

https://www.tum.de/nc/en/about-tum/news/press-releases/detail/article/34675/

Dr. Ulrich Marsch | Technische Universität München

Further reports about: Sports Informatics Training Science algorithm soccer tracking system

More articles from Social Sciences:

nachricht High acceptance for smart products
21.02.2020 | Universität Luzern

nachricht Trash talk hurts, even when it comes from a robot
19.11.2019 | Carnegie Mellon University

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Bacteria loop-the-loop

27.02.2020 | Life Sciences

Project on microorganisms: Saci, the bio-factory

27.02.2020 | Life Sciences

New method converts carbon dioxide to methane at low temperatures

27.02.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>