Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The human brain responds to receiving rewards ’the old fashioned way’

13.05.2004


Human beings are more aroused by rewards they actively earn than by rewards they acquire passively, according to brain imaging research by scientists at Emory University School of Medicine. Results of the study, led by first author Caroline F. Zink and principal investigator Gregory S. Berns, MD, PhD, of Emory’s Department of Psychiatry and Behavioral Sciences, are published in the May 13 issue of the journal Neuron.



The Emory scientists used functional magnetic resonance imaging (fMRI) to measure brain activity in the striatum, which is a part of the brain previously associated with reward processing and pleasure. Although other experiments have studied and noted brain activity associated with rewards, until now these studies have not distinguished between the pleasurable effects of receiving a reward and the "saliency" or importance of the reward.

Study volunteers in the Emory experiment were asked to play a simple target-detection computer game. During the game, a money bill appeared occasionally and automatically dropped into a bag of money on the screen. The participant was given the amount of money that dropped in the bag at the end of the game, but because receiving the money had nothing to do with their performance on the computer game, it was not particularly arousing or salient to them. In another version of the game, a money bill occasionally appeared on the screen and the participant had to momentarily interrupt the target detection game and push a button to make the bill drop into the bag. In this case, whether or not the participant received the money did depend on their performance, which made the appearance of the money bill more salient to them. In yet another version, participants played the same computer game except the bag on the screen did not appear to have money in it and a blank "blob" drop! ped into the bag instead of money.


The investigators performed fMRI on the subjects while they were playing the game, particularly focusing on the reward centers. They found that some reward centers of the brain were activated whenever the money was received, but that other parts, particularly the striatum, were activated only when the participants were actively involved in receiving the reward.

"Scientists have conducted tests with monetary rewards in the past and noted that the striatum was activated, but it has been unclear whether it was because of the pleasure surrounding the money or the fact that the money was presented to participants in a salient or behaviorally important manner," said Zink. "We differentiated the saliency aspect by having the participants receive money that had nothing to do with their actions and having them receive money through active participation."

The investigators confirmed that the appearance of money that required a response was more salient to participants than money received passively by measuring skin conductance responses during the game –– a measurement of general arousal used as part of lie detector tests. The active participation in receiving the reward was the only condition that elicited a higher skin conductance measure, indicating greater arousal.

"Being actively engaged in the pursuit of rewards is a highly important function for the brain, much more so than receiving the same rewards passively," Dr. Berns explains. "It is like the difference between winning the lottery and earning the same amount of money. From the brain’s perspective, earning it is more meaningful, and probably more satisfying."

Holly Korschun | EurekAlert!

More articles from Social Sciences:

nachricht High acceptance for smart products
21.02.2020 | Universität Luzern

nachricht Trash talk hurts, even when it comes from a robot
19.11.2019 | Carnegie Mellon University

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Active droplets

21.02.2020 | Medical Engineering

Finding new clues to brain cancer treatment

21.02.2020 | Health and Medicine

Beyond the brim, Sombrero Galaxy's halo suggests turbulent past

21.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>