Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First flavors form a lasting impression

05.04.2004


Infant feeding experiences help shape flavor preferences later in life



Ever wonder why your child loves to eat macaroni and cheese while her best friend likes nothing better than a steaming bowl of cauliflower curry? The answer may lie in part with what they were fed as young infants. Researchers at the Monell Chemical Senses Center in Philadelphia report that feeding experiences during the first seven months of life may contribute to food likes and dislikes.

"This research may help us to understand early factors involved in human food preferences and diet choice, an area with many important health implications. We can explore these early influences systematically by studying infants who are breastfeeding, as well as babies whose parents have decided to formula-feed," explains study lead author Julie Mennella, PhD.


As part of a research program aimed at understanding the underlying basis for individual food differences, the Monell researchers compared flavor preferences of bottle-fed infants raised on two different types of commercially-available infant formula. One was a standard milk-based formula. The second formula is called a protein hydrolysate because the proteins are ’pre-digested’ to help babies absorb them more easily. The two formulas are similar nutritionally but differ markedly with regard to flavor: milk-based formulas are described as bland and cereal-like, while hydrolysates taste exceedingly unpleasant to most adults, bitter and sour with a horrible after-taste.

In the study, reported in the April 2004 issue of Pediatrics, 53 babies were fed one of the two infant formulas for seven months. Starting at about two weeks of age, one group was fed only the standard formula while a second group received only the hydrolysate formula. Two additional groups combined three months of hydrolysate feeding, introduced at different times, with four months of standard formula. Because infants accept hydrolysate formulas readily during the first four months of life, all babies were content regardless of the formula they were fed.

At the end of the exposure period, all infants were given the chance to feed both types of formula. The babies’ behavior and the amount they fed depended on which formula they had fed during the previous seven months. Seven-month-old babies who had never fed the hydrolysate formula strongly rejected it. In contrast, infants accustomed to the formula appeared relaxed and happy while feeding, and drank more of the hydrolysate formula.

Mennella observes, "It is often difficult for parents to feed these formulas to their babies because they think it tastes bad. These findings reveal if the baby feeds this formula by three months of age, the baby learns to like its taste."

These early influences persist to shape flavor preferences during childhood – and perhaps longer. In earlier studies from Mennella’s laboratory, 4-to 5-year-old children fed hydrolysates during infancy were more accepting of sour taste and aroma – sensory qualities associated with these formulas – than children fed other formulas.

The current findings complement Mennella and co-author Beauchamp’s long-term research program on how breastfeeding infants learn about flavors. Because breast milk transmits flavors of mothers’ diets to nursing babies, breast-fed babies are exposed to flavor experiences during the nursing period. The Monell researchers suggest that this natural early flavor exposure serves to establish flavors of the mother’s diet – which will subsequently be fed to the growing child – as acceptable and preferred.

Mennella comments on some of the implications, "Because we know that flavor preferences established early in life track into later childhood, eating habits in the growing child may begin to be established long before the introduction of solid food."


The Monell Chemical Senses Center is a nonprofit basic research institute based in Philadelphia, PA. Scientists at the Monell Center conduct research devoted to understanding the senses of taste, smell, and chemical irritation: how they function and how they affect our lives, from before birth through old age. The Center’s approach is multidisciplinary. Scientists from a variety of backgrounds collaborate to address topic areas in sensation and perception, neuroscience and molecular biology, environmental and occupational health, nutrition and appetite, health and well-being, and chemical ecology and communication. For more information about Monell, visit the Center’s web site at www.monell.org or email inquiries to media@monell.org.

Citation: Julie A. Mennella, Cara E. Griffin, and Gary K. Beauchamp. Flavor Programming During Infancy. Pediatrics Apr 1, 2004; 113 (4)

Funding: NIH/National Institute of Child Health and Human Development

For additional information contact: Julie Mennella, PhD, Monell Chemical Senses Center, mennella@monell.org, 215.898.9230

Journal copies may be obtained from: American Academy of Pediatrics, 847.434.7084

Julie Mennella | EurekAlert!
Further information:
http://www.monell.org

More articles from Social Sciences:

nachricht High acceptance for smart products
21.02.2020 | Universität Luzern

nachricht Trash talk hurts, even when it comes from a robot
19.11.2019 | Carnegie Mellon University

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Active droplets

21.02.2020 | Medical Engineering

Finding new clues to brain cancer treatment

21.02.2020 | Health and Medicine

Beyond the brim, Sombrero Galaxy's halo suggests turbulent past

21.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>